Cálculo IV

Lúcia de Fátima de Medeiros Brandão Dias

São Cristóvão/SE 2012

Cálculo IV

Elaboração de Conteúdo Lúcia de Fátima de Medeiros Brandão Dias

Capa Hermeson Alves de Menezes

Copyright © 2012, Universidade Federal de Sergipe / CESAD. Nenhuma parte deste material poderá ser reproduzida, transmitida e gravada por qualquer meio eletrônico, mecânico, por fotocópia e outros, sem a prévia autorização por escrito da UFS.

FICHA CATALOGRÁFICA PRODUZIDA PELA BIBLIOTECA CENTRAL UNIVERSIDADE FEDERAL DE SERGIPE

Presidente da República

Dilma Vana Rousseff

Ministro da Educação

Fernando Haddad

Diretor de Educação a Distância

João Carlos Teatini Souza Clímaco

Reitor

Josué Modesto dos Passos Subrinho

Vice-Reitor

Angelo Roberto Antoniolli

Núcleo de Servicos Gráficos e Audiovisuais

Clotildes Farias de Sousa (Diretora)

Diretoria Administrativa e Financeira

Edélzio Alves Costa Júnior (Diretor) Sylvia Helena de Almeida Soares Valter Sigueira Alves

Coordenação de Cursos

Diretoria Pedagógica

Djalma Andrade (Coordenadora)

Núcleo de Formação Continuada

Rosemeire Marcedo Costa (Coordenadora)

Núcleo de Avaliação

Hérica dos Santos Matos (Coordenadora) Carlos Alberto Vasconcelos

Giselda Barros

Núcleo de Tecnologia da Informação

Chefe de Gabinete

Ednalva Freire Caetano

Coordenador Geral da UAB/UFS

Diretor do CESAD Antônio Ponciano Bezerra

coordenador-adjunto da UAB/UFS Vice-diretor do CESAD Fábio Alves dos Santos

João Eduardo Batista de Deus Anselmo Marcel da Conceição Souza Raimundo Araujo de Almeida Júnior

Assessoria de Comunicação

Edvar Freire Caetano Guilherme Borba Gouy

Coordenadores de Curso

Denis Menezes (Letras Português) Eduardo Farias (Administração) Haroldo Dorea (Química) Hassan Sherafat (Matemática) Hélio Mario Araújo (Geografia) Lourival Santana (História) Marcelo Macedo (Física) Silmara Pantaleão (Ciências Biológicas)

Coordenadores de Tutoria

Edvan dos Santos Sousa (Física) Geraldo Ferreira Souza Júnior (Matemática) Ayslan Jorge Santos de Araujo (Administração) Priscila Viana Cardozo (História) Rafael de Jesus Santana (Química) Gleise Campos Pinto Santana (Geografia) Trícia C. P. de Sant'ana (Ciências Biológicas) Laura Camila Braz de Almeida (Letras Português) Lívia Carvalho Santos (Presencial)

NÚCLEO DE MATERIAL DIDÁTICO

Hermeson Menezes (Coordenador) Marcio Roberto de Oliveira Mendoca Neverton Correia da Silva Nycolas Menezes Melo

UNIVERSIDADE FEDERAL DE SERGIPE

Cidade Universitária Prof. "José Aloísio de Campos" Av. Marechal Rondon, s/n - Jardim Rosa Elze CEP 49100-000 - São Cristóvão - SE Fone(79) 2105 - 6600 - Fax(79) 2105- 6474

<u>Sumário</u>

Aula 1	: Equações Diferenciais Ordinárias (E.D.O.)	13
1.1	Introdução	14
1.2	O que é uma E.D.O.?	14
1.3	Classificação das Equações Diferenciais	15
1.4	Motivação	16
1.5	Definições e terminologia	21
1.6	Equações Diferenciais Ordinárias e o Teorema Fun-	
	damental do Cálculo	23
1.7	Exemplo de um estudo qualitativo de uma E.D.O.	25
1.8	Conclusão	27
RE	SUMO	28
\mathbf{PR}	ÓXIMA AULA	28
\mathbf{AT}	IVIDADES	28
LEI	TURA COMPLEMENTAR	30
1.9	Referências Bibliográficas	30
Aula 2	: Teorema de Existência e Unicidade	31
2.1	Introdução	32
2.2	Problema de valor inicial ou problema de Cauchy	32
2.3	Teorema de existência e unicidade	34
2.4	Conclusão	37

	RES	SUMO	38
	PR	ÓXIMA AULA	38
	ATI	VIDADES	39
	LEI	TURA COMPLEMENTAR	40
	2.5	Referências Bibliográficas	40
Αı		: Equações de primeira ordem: Equações separá	veis e
	Equ	ações exatas	41
	3.1	Introdução	42
	3.2	Equações separáveis	42
	3.3	Equações exatas	47
	3.4	Obtendo solução de uma equação de primeira ordem	
		não exata	53
	3.5	Conclusão	56
	RES	SUMO	57
	PR	ÓXIMA AULA	57
	ATI	IVIDADES	57
	LEI	TURA COMPLEMENTAR	59
	3.6	Referências Bibliográficas	59
Α.	1- 4	. T	_
A		Equações de primeira ordem: Equações lineare	
	-	ações homogêneas, Equações de Bernoulli, Ricc	
	e C	lairaut	61
	4.1	Introdução	62
	4.2	Equações lineares	62
	4.3	Equações Homogêneas	64
	4.4	Equação de Bernoulli, Equação de Riccati e Equação	
		de Clairaut	69
	15	Conclusão	73

RES	SUMO	74	
PRÓ	ÖXIMA AULA	74	
ATI	ATIVIDADES		
LEI'	LEITURA COMPLEMENTAR		
4.6	Referências Bibliográficas	76	
Aula 5:	Modelos matemáticos de E.D.O. de primeira or	dem	
77			
5.1	Introdução	78	
5.2	Dinâmica populacional	78	
5.3	Datação da idade de um fóssil	80	
5.4	Esfriamento e aquecimento de um corpo	82	
5.5	Circuitos elétricos	83	
5.6	Diluição de soluções	84	
5.7	Trajetórias ortogonais	85	
5.8	Conclusão	87	
RES	SUMO	88	
PRÓXIMA AULA		88	
ATIVIDADES		88	
LEI	TURA COMPLEMENTAR	90	
5.9	Referências Bibliográficas	90	
Aula 6:	E.D.O. lineares de ordem superior	91	
6.1	Introdução	92	
6.2	Equações diferenciais ordinárias lineares de ordem		
	superior - Fundamentos teóricos		
	6.2.1 Dependência e independência linear de funções	93	
	6.2.2 Soluções de equações diferencias ordinárias		
	lineares	95	

	6.3	Redução de ordem	101
	6.4	Conclusão	104
	RES	SUMO	105
	PR	ÓXIMA AULA	106
	ATI	VIDADES	106
	LEI	TURA COMPLEMENTAR	107
	6.5	Referências Bibliográficas	107
Αı	ıla 7	: E.D.O. lineares com coeficientes constantes	109
	7.1	Introdução	110
	7.2	Resolvendo equações lineares homogêneas com coe-	
		ficientes constantes.	110
		7.2.1 Equações de ordem superior	115
	7.3	Resolvendo uma E.D.O. linear não homogênea com	
		coeficientes constantes	117
	7.4	Conclusão	123
	RES	SUMO	124
	PR	ÓXIMA AULA	124
	ATI	(VIDADES	124
	LEI	TURA COMPLEMENTAR	125
	7.5	Referências Bibliográficas	126
Αı	ıla 8	: Variação de parâmetros	127
	8.1	Introdução	128
	8.2	Resolvendo equações lineares não homogêneas	128
		8.2.1 Equações de ordem superior	133
	8.3	Modelagem matemática em E.D.O. lineares de or-	
		dem superior com coeficientes constantes	136
		8.3.1 O oscilador harmônico	136

8.4	Conclusão	144
\mathbf{RE}	SUMO	145
\mathbf{PR}	ÓXIMA AULA	145
\mathbf{AT}	IVIDADES	145
LEI	TURA COMPLEMENTAR	146
8.5	Referências Bibliográficas	147
Aula 9	: E.D.O. lineares com coeficientes variáveis:	
Equ	ıação de Cauchy-Euler	149
9.1	Introdução	150
9.2	Equação de Cauchy-Euler	150
	9.2.1 Equação de Cauchy-Euler de segunda ordem	150
	9.2.2 Equação de Cauchy-Euler de ordem superior	155
9.3	Conclusão	156
\mathbf{RE}	SUMO	157
\mathbf{PR}	ÓXIMA AULA	157
\mathbf{AT}	IVIDADES	157
LEI	TURA COMPLEMENTAR	157
9.4	Referências Bibliográficas	158
Aula 1	0: Equações diferenciais lineares	
coı	m coeficientes variáveis:	
So	luções por séries de potências	159
10.1	Introdução	160
10.2	Séries de potências	160
10.3	Soluções em série em torno de um ponto ordinário .	164
10.4	Soluções em série em torno de pontos singulares-	
	Método de Frobenius	171
10.5	Conclusão	177

RESUMO	178
PRÓXIMA AULA	178
ATIVIDADES	178
LEITURA COMPLEMENTAR	179
10.6 Referências Bibliográficas	180
Aula 11: A Transformada de Laplace: Fundamentos te	óricos
181	
11.1 Introdução	182
11.2 A transformada de Laplace	182
11.3 A transformada inversa de Laplace	189
11.4 Conclusão	192
RESUMO	193
PRÓXIMA AULA	193
ATIVIDADES	193
LEITURA COMPLEMENTAR	194
11.5 Referências Bibliográficas	194
Aula 12: Equações diferenciais e a	
Transformada de Laplace	195
12.1 Introdução	196
12.2 A transformada de uma derivada	196
12.3 Resolvendo equações diferenciais utilizando a trans-	
formada de Laplace	197
12.4 O teorema da convolução e a transformada de funções	
periódicas	200
12.5 Conclusão	202
RESUMO	203
PRÓXIMA AULA	203

ATIVIDADES	203
LEITURA COMPLEMENTAR	204
12.6 Referências Bibliográficas	204
Aula 13: Sistema de E.D.O. lineares de primeira orde	m
207	
13.1 Introdução	208
13.2 Sistema de equações lineares de primeira ordem: Fun-	
damentos teóricos	208
13.3 Sistemas de equações lineares de primeira ordem	
homogêneo com coeficientes constantes.	214
13.4 Conclusão	224
RESUMO	225
PRÓXIMA AULA	225
ATIVIDADES	225
LEITURA COMPLEMENTAR	226
13.5 Referências Bibliográficas	226
Aula 14: Resolução de sistema de	
E.D.O. lineares de primeira	
ordem não homogêneo	227
14.1 Introdução	228
14.2 Resolvendo um sistema de equações lineares de prime	eira
ordem não homogêneo	228
14.2.1 Variação de parâmetros	228
14.3 Conclusão	233
RESUMO	234
PRÓXIMA AULA	234
ATIVIDADES	234

LEITURA COMPLEMENTAR	235
14.4 Referências Bibliográficas	235
Aula 15: Aplicações	237
15.1 Introdução	238
15.2 Problemas envolvendo sistemas de equações lineares	238
15.2.1 Molas acopladas	238
15.2.2 Sistemas elétricos: Malhas paralelas	240
15.3 Problemas envolvendo sistemas de equações não li-	
neares	241
15.3.1 Movimentos de corpos celestes	241
15.4 Conclusão	242
RESUMO	243
PRÓXIMA AULA	243
ATIVIDADES	243
LEITURA COMPLEMENTAR	244
15.5 Referências Bibliográficas	244

Equações Diferenciais Ordinárias (E.D.O.)

META:

Introduzir as definições preliminares referentes ao conteúdo Equações

Diferenciais Ordinárias e dar motivações para o estudo dessas equações.

OBJETIVOS:

Ao fim da aula os alunos deverão ser capazes de:

Reconhecer e classificar uma Equação Diferencial Ordinária;

Compreender a importância prática de tais equações;

Identificar uma solução de uma Equação Diferencial Ordinária;

Entender o que é um estudo qualitativo de uma Equação Diferencial Ordinária.

PRÉ-REQUISITOS

Os conhecimentos de derivada e integrais de funções de valores reais com domínio em \mathbb{R} , da disciplina Cálculo I. Derivação implícita. Conhecimentos básicos sobre vetores e de gráficos de funções de uma variável.

1.1 Introdução

Caro aluno, seja bem-vindo a nossa primeira aula de Equações Diferenciais Ordinárias! Espero que juntos aprendamos um pouco sobre o universo dessas tão importantes equações. Na aula de hoje conheceremos o que é uma Equação Diferencial Ordinária (abreviaremos esse nome por E.D.O. de agora por diante), como estão divididas tais equações, algumas motivações práticas para seu estudo, o que é uma solução de uma E.D.O. e, por fim, conheceremos um pouco sobre a teoria qualitativa para E.D.O., atingindo assim o objetivo final para essa aula.

A história das Equações Diferenciais é tão antiga quanto a do cálculo diferencial, a qual data do século XVII. Desde o momento que os inventores do cálculo, Newton Leibniz. tiveram o entendimento necessário sobre a derivada de uma função, esta começou a aparecer em equações e logo descobriu-se que as soluções para tais equações não eram tão simples assim. Algumas dessas soluções podiam obtidas por meio da antiderivada, mas a maioria das equações não podiam ser resolvidas por esse processo.

1.2 O que é uma E.D.O.?

Bem resumidamente, uma Equação Diferencial é uma equação que envolve derivadas. Melhor dizendo

Definição 1.1. Chamamos por Equação Diferencial (E.D.) uma equação que contém derivadas de uma ou mais variáveis dependentes em relação a uma ou mais variáveis independentes.

Exemplo 1.1. 1. $\frac{dx}{dt} + 3x = senx$; (x é a variável dependente pois x é vista como função de t e t a variável independente)

$$2. \ 3\frac{dy}{dt} + x\frac{dx}{dt} = y + x$$

$$3. \ x\frac{dx}{dt} + \frac{dx}{ds} = 5$$

Definição 1.2. Chamamos por Equação Diferencial Ordinária (E.D.O.) uma equação que contém derivadas de uma ou mais variáveis dependentes em relação a apenas uma variável independente.

Equações Diferenciais Ordinárias

AULA

1

Nos exemplos acima, os de número 1 e 2 apenas são E.D.O's. O exemplo 3 é conhecido como Equação Diferencial Parcial (E.D.P.), pois possue derivadas em relação a mais de uma variável independente.

Matematicamente falando podemos representar uma E.D.O em uma variável dependente na forma geral

$$F(x, y, y', y'', \cdot, y^{(n)}) = 0,$$

onde F é uma função de valores reais de n+2 variáveis, x é a variável independente, y é a variável dependente e $y', y'', \dots, y^{(n)}$ são as derivadas de y com respeito a x até ordem n.

Em uma E.D.O. $F(x, y, y', y'', \dots, y^{(n)}) = 0$, quando for possível expressar a derivada de ordem maior $y^{(n)}$ em função dos outros termos da equação, ou seja

$$y^{(n)} = f(x, y, y', y'', \dots, y^{(n-1)})$$

dizemos que a E.D.O. está na sua forma normal.

- Observação 1.1. 1. Admitiremos que, pelo menos localmente, toda E.D.O. pode ser escrita na sua forma normal. (isso é possível devido ao Teorema da função implícita)
 - 2. Poderemos usar também a notação $\frac{d^n y}{dx^n}$ além de $y^{(n)}$ para representar a derivada de ordem n de y com respeito à x.

1.3 Classificação das Equações Diferenciais

As Equações diferenciais se classificam quanto ao tipo, a ordem e a linearidade. Quanto ao tipo elas podem ser Equações Diferenciais Ordinárias ou Equações Diferenciais Parcias. Estudaremos adiante a classificação com respeito as E.D.O.'s.

O que é uma E.D.P.?

Uma E.D.P. é uma equação que contém derivadas de uma ou mais variáveis dependentes em relação a DUAS OU MAIS variáveis independentes. Elas possuem a mesma classificação das E.D.O.'s.

Quanto à ordem

A ordem de uma E.D.O. é dada pelo índice da maior derivada existente na equação. Por exemplo as equações

$$3xy''' + y'' + 3x^5y' = 5, (y')^5 + y'' = 0, y^{(5)} + 5xy^{(7)} + y' = 2$$

são equações de ordem 3, 2 e 7, respectivamente.

Quanto à linearidade

Uma E.D.O. de ordem $n, F(x, y, y', \cdot, y^{(n)}) = 0$, é dita linear se ela puder ser escrita na forma

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \cdots + a_1(x)y' + a_0(x)y = g(x).$$

Exemplo 1.2. 1) $x^2y''' + y' = 7$ (E.D.O. linear)

- 2) $(sen x)y'' + y^{(4)} = lnx$ (E.D.O. linear)
- 3) $yy'' + y^{(4)} = lnx$ (E.D.O. não linear por causa do termo yy'')
- 4) $y^{(5)} + 3x^2y + lny = 0$ (E.D.O. não linaer devido ao termo $\ln y$).

1.4 Motivação

Por que estudar E.D.O.? As E.D.O.'s modelam problemas reais, tais como:

- Crescimento populacional
- Movimento de um pêndulo
- Propagação de doenças
- Lançamento e movimento de foguetes
- Movimento de corpos celestes
- Movimento de corpos em planos inclinados

Equações Diferenciais Ordinárias

<u>AULA</u>

1

- Corpos em movimento harmônico simples
- Decaimento radioativo
- Reações e misturas químicas
- Circuitos elétricos
- Corpos em queda

A seguir vamos conhecer mais de perto como as E.D.O.'s aparecem em alguns desses problemas.

Movimento de um corpo em um plano inclinado

Considere um corpo de massa m movendo-se, sem atrito, num plano inclinado, como mostra a figura abaixo. Sabemos que a

Figura 1.1: Corpo de massa m num plano inclinado.

resultante das forças na direção y, dada por $F_{ry}=N-P_y=N-P_y=N-P\cos\theta$, é nula, uma vez que não há movimento na direção y. Contudo, a resultante das forças na direção x, dada por $F_{rx}=P_x=P\sin\theta$, não é nula. Pela segunda Lei de Newton, sabemos que a força resultante que age em um corpo de massa constante é igual ao produto de sua massa por sua aceleração, ou seja, $F_r=m\,a$. Dessa maneira, como a força resultante que age no corpo de massa m no plano inclinado acima é $F_{rx}+F_{ry}=P\sin\theta+0=mg\sin\theta$

A modelagem matemática é uma área do conhecimen to que busca trazer para a linguagem matemática problemas muitas vezes reais a fim de estudálos. É o que acontece, por exemplo, no estudo dos movimentos dos corpos celestes e na datação da idade de um fóssil.

temos que o movimento desse corpo é descrito pela equação

$$P \operatorname{sen} \theta = m a_x = m x'',$$

onde x representa a posição do corpo, a_x representa a aceleração desse corpo na direção x, e (') representa derivação com respeito ao tempo t. Assim, o movimento do corpo, sobre o plano inclinado, ao longo do tempo é dado pela solução da E.D.O.

$$x'' = gsen \theta.$$

Observação 1.2. 1- A aceleração de um corpo num instante de tempo t é conhecida como a taxa de variação da velocidade desse corpo ao longo do tempo, ou seja, $a = \frac{dv}{dt}$ e como a velocidade num instante de tempo t é a taxa de variação da posição desse corpo ao longo do tempo, temos que $a = \frac{d^2x}{dt^2}$, onde v e x representam, respectivamente, a velocidade e a posição do corpo.

2- No problema acima, se $\theta = 0$, o corpo estará em repouso na horizontal (considerando a velocidade inicial nula). Se $\theta = 90^{\circ}$, o corpo estará em queda livre.

Movimento de um pêndulo simples

Considere o pêndulo abaixo

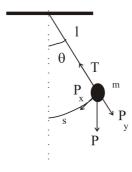


Figura 1.2: Pêndulo simples.

AULA

Consideremos s a medida do arco formado pelo pêndulo (deslocamento do pêndulo) quando este forma com a linha vertical um ângulo θ , como mostra a figura acima. Sabemos que $s=l\theta$, onde l é o comprimento do fio do pêndulo. Assim, como l é uma constante, a aceleração do pêndulo ao longo do tempo t é dada por $a=\frac{d^2s}{dt^2}=l\,\frac{d^2\theta}{dt^2}$.

A força resultante na direção y é nula, uma vez que a tração, T, no fio é igual a componente da força peso P na direção y. Contudo, a força resultante na direção x não é nula e é dada por $-mg \, sen \, \theta$, (o sinal negativo é porque essa força resultante é uma força restauradora). Assim, da segunda Lei de Newton, obtemos que $-mg \, sen \, \theta = ml \, \frac{d^2 \theta}{dt^2}$ ou melhor

$$\frac{d^2\theta}{dt^2} = -\frac{g}{l}sen\,\theta.$$

Portanto, para descrevermos o movimento desse pêndulo ao longo do tempo, basta-nos achar a solução dessa E.D.O..

Sistema massa-mola (Movimento Harmônico simples).

Considere a figura abaixo onde descrevemos o movimento de um corpo de massa m preso a uma mola com constante de elasticidade k.

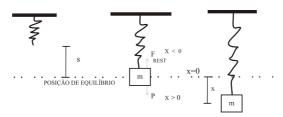


Figura 1.3: Sistema massa-mola.

O Movimento Harmônico simples-M.H.S.- é um movimento oscilatório que se caracteriza pela ação de forças restauradoras do tipo elásticas. A mola, a princípio se encontra sem nenhum corpo preso a ela. Quando prendemos o corpo de massa m, a mola se distende s unidades de comprimento (**Lei de Hooke**) e o corpo fica parado, ou seja, o sistema massa-mola está na sua posição de equilíbrio. Nesse estado temos a igualdade entre a força peso e a força restauradora da mola que, matematicamente, é descrita pela equação

$$ks = mq$$
.

Se deslocarmos para baixo a massa m por uma quantidade x de sua posição de equilíbrio e soltarmos temos, pela segunda lei de Newton que

$$F_r = m a$$

onde F_r é a força resultante agindo na massa m, a qual nesse caso será a soma das forças peso e restauradora da mola, ou seja, $F_r=mg-k(s+x)$. Dessa maneira a equação $F_r=m\,a$ assume a forma

$$mq - k(x+s) = m\ddot{x}.$$

Como g e s são constantes, obtemos uma equação diferencial ordinária linear de segunda ordem dada por

$$\ddot{x} = -\frac{k}{m}x,$$

ei de Hooke (1635- uma vez que ks=mg. 703)A força restaudora exercida pela mola O campo de aplicações

O campo de aplicações para as E.D.O.'s é imenso, poderíamos ficar aqui listando inúmeros modelos matemáticos onde tais equações aparecem, mas optamos por falar mais deles adiante, quando tivermos exposto algumas técnicas de resolução de E.D.O.'s.

Lei de Hooke (1635-1703)A força restauradora exercida pela mola é proporcional à distenção da mola. Esta força é oposta à direção do alongamento.

Equações Diferenciais Ordinárias

AULA

1

1.5 Definições e terminologia

Definição 1.3. Uma solução de uma E.D.O. de ordem n é uma função ϕ definida em um intervalo $I \subset \mathbb{R}$ a qual tem pelo menos n derivadas em I e que satisfaz a E.D.O. dada.

Por exemplo, considere a E.D.O., $F(x,y,y',\cdots,y^{(n)})=0$, uma solução dessa E.D.O. é uma função ϕ definida em um intervalo $I\subset\mathbb{R}$ que tem pelo menos n derivadas em I tal que

 $F(x, \phi(x), \phi'(x), \dots, \phi^{(n)}(x)) = 0$, para todo $x \in I$.

Exemplo 1.3. A função y dada por $y(x) = \frac{x^4}{16}$, $x \in \mathbb{R}$ é solução da E.D.O. $4y'-x^3=0$ uma vez que é diferenciável em \mathbb{R} e satisfaz a E.D.O. dada, vamos verificar?

Derivando y com respeito a x, obtemos $y' = x^3/4$. Substituindo em $4y' - x^3$ segue que $4y' - x^3 = 0$.

Mas será que essa é a única solução? Observe que toda expressão da forma $y(x) = \frac{x^4}{16} + c, c \in \mathbb{R}$ é uma solução para essa E.D.O.. Quando isso acontece dizemos que a E.D.O. possue uma família de soluções a um parâmetro, que nesse caso é c.

Observação 1.3. O intervalo de definição de uma solução é algo que merece cuidado, pois em geral confunde-se domínio de uma função com intervalo de definição de uma solução. Por exemplo, a função $y=\frac{1}{x}$ é solução da E.D.O. xy'+y=0 para x pertencente a qualquer intervalo dos números reais que não contém o zero, como por exemplo, $(0,\infty)$. Contudo, $y=\frac{1}{x}$ como função está definida em \mathbb{R}^* .

Observação 1.4. 1. Uma solução de uma E.D.O. identicamente nula no seu intervalo de definição I é chamada solução trivial.

- 2. Em geral, uma E.D.O. possue um número infinito de soluções.
- 3. Podemos ter soluções de uma E.D.O. que não veem de uma família de soluções dessa E.D.O.. Como por exemplo, a E.D.O. $\frac{dy}{dx} = y^2 4$ possue a seguinte família de soluções $y(x) = 2\frac{(1+ce^{4x})}{(1-ce^{4x})}, c \in \mathbb{R}$, contudo $\widetilde{y}(x) = -2$ é solução dessa E.D.O. e não provém dessa família, uma vez que não existe valor do parâmetro c tal que $y(x) = \widetilde{y}(x) = -2$.
- Quando uma solução de uma E.D.O. vem de uma família de soluções encontrada, a denominamos solução particular da E.D.O. dada.
- 5. (Solução implícita)- Nem sempre encontraremos a solução de uma E.D.O. em sua forma explícita, $y = \phi(x)$. As soluções de algumas E.D.O.'s, quando for possível acharmos tais soluções, em geral serão dadas na forma G(x,y) = 0, a qual define implicitamente a solução. Por exemplo, G(t,E,c) = 0, onde G(t,E,c) = c t + E sen E é uma família de soluções implícitas (a um parâmetro) da E.D.O. $\frac{dE}{dt} = \frac{1}{1-\cos E}.$ (para verificar derive implicitamente com respeito a t a expressão G(t,E) = 0)

Um outro exemplo, considere G(x,y)=0, onde $G(x,y)=x^2+y^2-4$ e -2< x< 2 é uma solução ímplicita da E.D.O. $\frac{dy}{dx}=-\frac{x}{y}.$

6. Dada uma E.D.O.

$$\frac{dy}{dx} = f(x, y),$$

uma solução da forma $\phi(x) = c, c \in \mathbb{R}$ é dita solução de equilíbrio da E.D.O. dada se $f(x, \phi) = 0$.

AULA

1

Por exemplo, $\phi(x) = 2$ é solução de equilíbrio da E.D.O.

$$\frac{dy}{dx} = y^2 - 4.$$

Definição 1.4. O gráfico de uma solução ϕ de uma E.D.O. é chamado de **curva integral**. Uma vez que ϕ é diferenciável em seu intervalo de definição I, sua curva integral é contínua em I.

Abaixo descrevemos algumas curvas integrais da família de soluções do Exemplo 1.3.

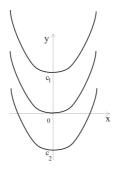


Figura 1.4: Parte de algumas curvas integrais de $y' = x^3/4$.

1.6 Equações Diferenciais Ordinárias e o Teorema Fundamental do Cálculo

Um problema básico do Cálculo Integral é a determinação do valor da integral definida

$$\int_{\alpha}^{\gamma} f(x) dx$$

de uma função $f: [\alpha, \gamma] \to \mathbb{R}$.

Quando f é contínua e não negativa podemos relacionar o conceito de integral definida com a idéia de área

O Teorema Fundamental do Cálculo interliga os conceitos de integral e derivada e nos mostra uma maneira de resolver algumas Teorema Fundamental do Cálculo- Parte I: Seja f: $[a,b] \to \mathbb{R}$ uma função contínua. A função F: $[a,b] \to \mathbb{R}$ definida pela expressão

$$F(x) = \int_{a}^{x} f(x)dx \quad (1.1)$$

é derivável e F'(x) = f(x)para todo $x \in (a, b)$.

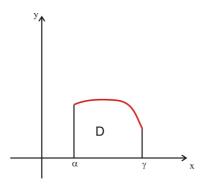


Figura 1.5: R é a área abaixo do gráfico da função f.

integrais definidas.

Observe que a função F definida em (1.1) é uma solução da equação diferencial

$$\frac{dy}{dx} = f(x). (1.2)$$

As soluções dessa E. D. O. são chamadas as primitivas de f. Nesse caso dizemos que a E.D.O. foi resolvida por quadratura, ou seja, foi possível achar uma primitiva para a função f.

Toda a parte do Cálculo chamada de cálculo de primitivas nada mais é do que a determinação de soluções da equação diferencial (1.2) para diferentes funções f. Assim, o problema de resolvermos uma integral, ou seja, acharmos uma primitiva, é equivalente ao problema de resolvermos uma E.D.O.. Como sabemos do Cálculo, uma vez que nem toda função possui primitiva, nem toda E.D.O. possuirá solução dada explicitamente.

O número de equações que podem ser resolvidas em termos de funções elementares (ou por quadratura) é muito pequeno, mesmo depois da introdução de funções representadas por integrais, como é o caso das funções elípticas. Segundo, Figueiredo (2007) essa

AULA

constatação gerou a busca de novos métodos e surgiu assim o uso de séries de funções na resolução de uma E. D. O., o Teorema de Existência e Unicidade de soluções, a teoria qualitativa, a qual se preocupa em extrair o máximo de informações possíveis sobre a solução de uma E.D.O. sem conhecer explicitamente a solução da mesma e métodos numéricos. Na seção seguinte daremos um exemplo de um estudo qualitativo de uma E.D.O..

1.7 Exemplo de um estudo qualitativo de uma E.D.O.

Consideremos uma E.D.O. de 1^a ordem na sua forma normal

$$\frac{dy}{dx} = f(x, y) \tag{1.3}$$

Suponhamos que não seja possível encontrar a solução dessa E.D.O., por métodos analíticos. Quando nos deparamos com problemas assim e tentamos obter informações sobre as soluções diretamente da própria E.D.O. dada, estamos realizando um estudo qualitativo das equações do problema.

Sabemos do cálculo que a derivada $\frac{dy}{dx}$ de uma função diferenciável y=y(x) nos dá a inclinação da reta tangente em um ponto (x,y) sobre o gráfico da tal função. Assim, tomemos um ponto (x_0,y_0) sobre a curva integral de uma solução de (1.3), o valor $f(x_0,y_0)$ nos dá a inclinação da reta tangente à curva integral no ponto (x_0,y_0) . Melhor dizendo $f(x_0,y_0)$ nos dá a inclinação de um segmento de reta, denominado elemento linear, tangente à curva integral no ponto (x_0,y_0) . Por exemplo, consideremos a equação

$$\frac{dy}{dx} = -\frac{y}{x},$$

matemático O Henri Poincaré foi uma grandes mentes pensantes da matemática de sua época e porque não dizer da história dessa ciência até então. Suas pesquisas foram e são de grande várias importância $_{
m em}$ áreas damatemática, tais como: análise, álgebra, geometria e teoria dos números. Ele foi o grande precursor da teoria qualitativa para E.D.O.'s não linear e suas idéias nessa área contribuíram para uma nova maneira de abordar muitos dos problemas em mecânica celeste.

onde $f(x,y) = -\frac{y}{x}$. No ponto (4,7), por exemplo, a inclinação do elemento linear é f(4,7) = -7/4. A figura abaixo nos mostra a representação desse elemento linear na curva integral da solução.

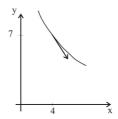


Figura 1.6: Elemento linear na curva integral.

Definição 1.5. Considere a E.D.O.(1.3) e calcule todos os valores de f(x,y) sobre uma malha retangular de pontos (x,y) no plano xy. Para cada ponto (x_0,y_0) dessa malha, associe um vetor (ou um elemento linear) com inclinação $f(x_0,y_0)$. A coleção de todos esses vetores será chamada de **campo de direções** de (1.3). É por esta razão que dada uma E.D.O. como (1.3) chamamos muitas vezes a função f(x,y) de campo associado a E.D.O. dada.

No caso da E.D.O., $\frac{dy}{dx} = -\frac{y}{x}$, temos o seguinte campo de vetores

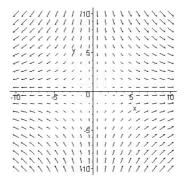


Figura 1.7: Campo de vetores.

Visualmente, o campo de direções de uma E.D.O. sugere a aparên-

Equações Diferenciais Ordinárias AULA

cia ou a forma de uma família de curvas integrais dessa E.D.O.. Assim, podemos responder perguntas como, existe soluções periódicas ou existe soluções que crescem ou diminuem indefinidamente (soluções de escape) sem que conheçamos de fato a expressão da família de soluções.

1.8 Conclusão

As Equações Diferenciais estão muito presentes no nosso dia a dia e, em particular, as Equações Diferenciais Ordinárias. Com o auxílio das leis da Fisíca descobriu-se uma infinidade de aplicações para essas equações. Infelizmente, nem toda E.D.O. possui uma solução dada explicitamente. Isso fez com que surgissem técnicas que nos dessem informações sobre as soluções sem que necessariamente tivéssemos suas expressões algébricas, essas técnicas estão inseridas no que chamamos de Estudo Qualitativo das E.D.O.´s. O matemático Henri Poincaré foi o precursor desse estudo.

RESUMO

..

Na aula de hoje vimos o que são Equações Diferenciais Ordinárias, como se classificam e como estão relacionadas com outras ciências. Vimos também o que é uma solução de uma E.D.O., que as soluções de uma E.D.O. podem ser dadas de maneira explícita (quando conhecemos sua expressão algébrica) ou de maneira implícita. Vimos o que são soluções de equilíbrio, solução particular e curva integral. Aprendemos que uma E.D.O., em geral, não possui apenas uma solução e como o conceito de solução de uma E.D.O. está ligado ao cálculo de primitivas de uma função, termo que vem lá do Cálculo Integral. Vimos que para se resolver o problema de não se poder obter uma solução explícita para toda E.D.O. podese usar as ferramentas da teoria qualitativa, onde é possível obter informações sobre a solução de uma E.D.O. sem que conheçamos sua expressão algébrica.

PRÓXIMA AULA

••

Em nossa próxima aula veremos o que é um problema de valor inicial ou problema de Cauchy e quais as condições para que uma E.D.O. tenha solução única passando por um ponto.

ATIVIDADES

••

Atividade. 1.1. Classifique as equações diferencias abaixo quanto ao tipo, ordem e linearidade.

AULA

1

a)
$$3x^2y^{(4)} + (y')^6 = 1$$
.

$$b)3x\frac{dy}{dx} + \frac{dz}{dx} = x^5.$$

$$c)(\ln x)\frac{d^3x}{dt^3} + 5\frac{dx}{dt} - x = 0.$$

d)
$$(1-x)y'' - 4xy' + 5y = \cos x$$
.

$$\mathrm{e})x\frac{d^3y}{dx^3} - 2\left(\frac{dy}{dx}\right)^4 + y = 0.$$

f)
$$yy' + 2y = 1 + x^2$$
.

g)
$$x^2 dy + (y - xy - xe^x) dx = 0.$$

h)
$$\frac{dx}{dt} + 3x\frac{dy}{ds} + 1 = 90.$$

Atividade. 1.2. Verifique que a função $g(x)=c_1\cos(4x)+c_2sen(4x), c_1, c_2 \in \mathbb{R}$ é uma família de soluções da E.D.O.

$$y'' + 16y = 0.$$

Atividade. 1.3. Verifique que uma família a um parâmetro de soluções para

$$y = xy' + (y')^2$$
 é $y = cx + c^2$.

Determine um valor de k para que $y=kx^2$ seja uma solução particular para a equação diferencial.

Atividade. 1.4. Encontre uma solução de equilíbrio para as E.D.O.'s (encontre essa solução sem resolver a E.D.O.)

a)
$$y' = 8xy$$

b)
$$\frac{dx}{dt} = (1 - t^2)(1 - x^2)$$

Atividade. 1.5. Mostre que $y_1 = 2x + 2$ e $y_2 = -x^2/2$ são ambas soluções de

$$y = xy' + (y')^2/2.$$

As funções, c_1y_1 e c_2y_2 onde $c_1, c_2 \in \mathbb{R}$ são também soluções? Desenhe as curvas integrais.

Atividade. 1.6. Em certas circunstâncias, um corpo B de massa m em queda encontra resistência do ar proporcional à sua velocidade v. Use a segunda lei de Newton para encontrar a equação diferencial para a velocidade v do corpo em qualquer instante. Lembre-se de que a aceleração é a=dv/dt. Suponha neste caso que a direção positiva é para baixo. Depois classifique a equação encontrada.

LEITURA COMPLEMENTAR

FIGUEIREDO, Djairo Guedes, Equações Diferenciais Aplicadas. Coleção matemática universitária. IMPA, 2007.

SOTOMAYOR, Jorge, Lições de equações diferenciais ordinárias. IMPA.

ZILL, Dennis G., Equações Diferenciais com aplicações em modelagem. Thomson, 2003.

1.9 Referências Bibliográficas

FIGUEIREDO, Djairo Guedes, Equações Diferenciais Aplicadas. Coleção matemática universitária. IMPA, 2007.

ZILL, Dennis G., Equações Diferenciais com aplicações em modelagem. Thomson, 2003.