Capítulo 8

Formas Bilineares

Curso: Licenciatura em Matemática

Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo

Disciplina: Álgebra Linear II

Unidade II

Aula 8: Formas Bilineares

Meta

Propiciar ao aluno o conceito e principais propriedades de formas bilineares.

Objetivos

Ao final desta aula, o aluno deverá ser capaz de identificar uma forma bilinear, de qual tipo e quais suas principais propriedades.

Pré-requisitos

Álgebra Linear I.

8.1 Introdução

Formas bilineares e formas quadráticas estão envolvidas com a representação de cônicas e superfícies em \mathbb{R}^2 e \mathbb{R}^3 , respectivamente. Possuem aplicações importantes em otimização e programação linear. Há uma relação entre formas bilineares simétricas e operadores auto-adjuntos, de modo que a representação matricial de uma forma bilinear simétrica também é diagonalizável.

8.2 Formas Bilineares

8.2.1 Definição e Exemplos

Definição 8.1. Seja V um espaço vetorial. Uma função $f:V\times V\to\mathbb{R}$ que satisfaz

- i) $f(\lambda u, v) = \lambda f(u, v)$, para todo $u, v \in V, \lambda \in \mathbb{R}$;
- ii) $f(u, \lambda v) = \lambda f(u, v)$, para todo $u, v \in V, \lambda \in \mathbb{R}$;
- iii) f(u+w,v) = f(u,v) + f(w,v), para todo $u,v,w \in V$;
- iv) f(u, v + w) = f(u, v) + f(u, w), para todo $u, v, w \in V$;

é chamada forma bilinear sobre V, ou simplemente forma bilinear.

Notação: $B(V) = \{ f : V \times V \to \mathbb{R} \text{ \'e uma forma bilinear} \}.$

Obs 8.1. Verifique que B(V) munido das operações de adição,

$$(f+g)(u,v) := f(u,v) + g(u,v),$$

para todo $(u, v) \in V \times V$ e de multiplicação por escalar,

$$(\lambda f)(u,v) := \lambda f(u,v),$$

para todo $(u, v) \in V \times V$ e $\lambda \in \mathbb{R}$, é um espaço vetorial.

Exemplo 8.1. Seja $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ uma função definida por

$$f((x,y),(a,b)) = 3xa - 2xb + 5ya + 7yb.$$

Vamos mostrar que f é bilinear. De fato, para (x,y),(a,b) e $(c,d)\in\mathbb{R}^2$ e $\lambda\in\mathbb{R}$, temos:

i)
$$f(\lambda(x,y),(a,b)) = f((\lambda x, \lambda y),(a,b))$$
$$= 3(\lambda x)a - 2(\lambda x)b + 5(\lambda y)a + 7(\lambda y)b$$
$$= \lambda(3xa - 2xb + 5ya + 7yb)$$
$$= \lambda f((x,y),(a,b)).$$

ii)
$$f((x,y), \lambda(a,b)) = f((x,y), (\lambda a, \lambda b))$$

$$= 3x(\lambda a) - 2x(\lambda b) + 5y(\lambda a) + 7y(\lambda b)$$

$$= \lambda(3xa - 2xb + 5ya + 7yb)$$

$$= \lambda f((x,y), (a,b)).$$

iii)
$$f((x,y),(a,b)+(c,d)) = f((x,y),(a+c,b+d))$$

 $= 3x(a+c) - 2x(b+d) + 5y(a+c) + 7y(b+d)$
 $= (3xa - 2xb + 5ya + 7yb) + (3xc - 2xd + 5yc + 7yd)$
 $= f((x,y),(a,b)) + f((x,y),(c,d)).$

Pela Definição 8.1, concluímos que f é uma forma bilinear.

Exemplo 8.2. Seja $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ dada por f((x,y),(a,b)) = -2xb + 2ya. Sejam $(x,y),(a,b),(c,d) \in \mathbb{R}^2$ e $\lambda \in \mathbb{R}$. Note que f é uma forma bilinear, pois:

$$\mathbf{i)} \ f(\lambda(x,y),(a,b)) = f((\lambda x, \lambda y),(a,b))$$
$$= -2(\lambda x)b + 2(\lambda y)a$$
$$= \lambda(-2xb + 2ya)$$
$$= \lambda f((x,y),(a,b)).$$

ii)
$$f((x,y), \lambda(a,b)) = f((x,y), (\lambda a, \lambda b))$$

 $= -2x(\lambda b) + 2y(\lambda a)$
 $= \lambda(-2xb + 2ya)$
 $= \lambda f((x,y), (a,b)).$

iii)
$$f((x,y),(a,b)+(c,d)) = f((x,y),(a+c,b+d))$$

 $= -2x(b+d)+2y(a+c)$
 $= (-2xb+2ya)+(-2xd+2yc)$
 $= f((x,y),(a,b))+f((x,y),(c,d)).$

$$iv) f((x,y) + (c,d), (a,b)) = f((x+c,y+d), (a,b))$$

$$= -2(x+c)b + 2(y+d)a$$

$$= (-2xb + 2ya) + (-2cb + 2da)$$

$$= f((x,y), (a,b)) + f((c,d), (a,b)).$$

Exemplo 8.3. Seja V um espaço vetorial com produto interno $\langle \cdot, \cdot \rangle$. Vamos provar que

 $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ é uma forma bilinear. Note que, pela Definição 1.1,

- i) $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$, para todo $u, v \in V, \lambda \in \mathbb{R}$;
- ii) $\langle u, \lambda v \rangle = \lambda \langle u, v \rangle$, para todo $u, v \in V, \lambda \in \mathbb{R}$;
- iii) $\langle u+w,v\rangle=\langle u,v\rangle+\langle w,v\rangle$, para todo $u,v,w\in V$;
- iv) $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$, para todo $u, v, w \in V$;

ou seja, $\langle \cdot, \cdot \rangle$ satisfaz todos os itens da Definição 8.1. Isto nos diz que $\langle \cdot, \cdot \rangle$ é uma forma bilinear.

Exemplo 8.4. Seja V um espaço vetorial com produto interno $\langle \cdot, \cdot \rangle$. Seja $T: V \to V$ um operador linear. Seja $f(u, v) = \langle T(u), v \rangle$, para todo $u, v \in V$. Então,

- i) $f(\lambda u, v) = \langle T(\lambda u), v \rangle = \langle \lambda T(u), v \rangle = \lambda \langle T(u), v \rangle = \lambda f(u, v)$, para todo $u, v \in V$ e $\lambda \in \mathbb{R}$;
- ii) $f(u, \lambda v) = \langle T(u), \lambda v \rangle = \lambda \langle T(u), v \rangle = \lambda f(u, v)$, para todo $u, v \in V$ e $\lambda \in \mathbb{R}$;
- iii) $f(u+w,v) = \langle T(u+w), v \rangle = \langle T(u) + T(w), v \rangle = \langle T(u), v \rangle + \langle T(w), v \rangle = f(u,v) + f(w,v)$, para todo $u, v, w \in V$;
- iv) $f(u, v + w) = \langle T(u), v + w \rangle = \langle T(u), v \rangle + \langle T(u), w \rangle = f(u, v) + f(u, w)$, para todo $u, v, w \in V$.

Logo, f é uma forma bilinear.

Exemplo 8.5 (Forma Não-bilinear). Seja $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ uma função definida por f((x,y),(a,b))=1, para todo $(x,y),(a,b)\in \mathbb{R}^2$. Afirmamos que f não é uma forma bilinear. Com efeito,

$$f(2(1,0),(0,1)) = f((2,0),(0,1)) = 1 e 2f((1,0),(0,1)) = 2 \cdot 1 = 2.$$

Com isso,

$$f(2(1,0),(0,1)) \neq 2f((1,0),(0,1)).$$

Portanto, f não satisfaz o item i) da Definição 8.1. Dessa forma, f não é uma forma bilinear.

8.2.2 Formas Bilineares Simétrica e Anti-simétrica

Definição 8.2. Seja V um espaço vetorial. Seja $f:V\times V\to\mathbb{R}$ uma forma bilinear. Dizemos que

- i) f é simétrica se f(u,v) = f(v,u), para todo $u,v \in V$;
- ii) f é anti-simétrica se f(u,v)=-f(v,u), para todo $u,v\in V$.

Exemplo 8.6 (Forma Bilinear Não-simétrica). A forma bilinear do exemplo 8.1 não é simétrica. Com efeito,

$$f((1,0),(0,1)) = -2 e f((0,1),(1,0)) = 5,$$

ver definição da forma no exemplo 8.1. Consequentemente,

$$f((1,0),(0,1)) \neq f((0,1),(1,0)).$$

Portanto, f, definida no exemplo 8.1, não é uma forma bilinear simétrica (ver Definição 8.2)

Exemplo 8.7. Seja V um espaço vetorial com produto interno $\langle \cdot, \cdot \rangle$. Vimos no exemplo 8.3 que o produto interno é uma forma bilinear. Pela Definição 1.1, temos que $\langle u, v \rangle = \langle v, u \rangle$, para todo $u, v \in V$. Logo, $\langle \cdot, \cdot \rangle$ é uma forma bilinear simétrica (ver Definição 8.2).

Exemplo 8.8. Considere a forma bilinear f((x,y),(a,b)) = -2xb + 2ya, vista no exemplo 8.2. Veja que

$$f((x,y),(a,b)) = -2xb + 2ya = -(-2ay + 2bx) = -f((a,b),(x,y)),$$

para todo $(x, y), (a, b) \in \mathbb{R}^2$. Logo, pela Definição 8.2, f é uma forma bilinear anti-simétrica.

8.2.3 Resultados Importantes

Caros alunos, veremos, nesta seção, que a recíproca do exemplo 8.4 é verdadeira, mas para isto precisamos da finitude da dimenensão do espaço vetorial em questão.

Teorema 8.1. Seja V um espaço vetorial com produto interno $\langle \cdot, \cdot \rangle$ e dimensão finita. Seja $f: V \times V \to \mathbb{R}$ uma forma bilinear. Então existe um único operador linear $T: V \to V$ tal

que $f(u,v) = \langle T(u),v \rangle$, para todo $u,v \in V$. Além disso, f é simétrica se, e somente se, T é auto-adjunto.

Demonstração. Seja $v \in V$ um vetor fixado. Seja $g: V \to \mathbb{R}$ uma aplicação definida por g(u) = f(u, v), para todo $u \in V$. Note que, através da Definição 8.1, chegamos a

$$g(\lambda u + w) = f(\lambda u + w, v) = \lambda f(u, v) + f(w, v) = \lambda g(u) + g(w),$$

para todo $u, w \in V$ e $\lambda \in \mathbb{R}$. Consequentemente, g é um funcional linear (ver Definição 4.1). Logo, pelo Teorema 4.1, existe um único $w \in V$ tal que $g(u) = \langle u, w \rangle$, para todo $u \in V$. Defina o operador $S: V \to V$ dado por S(v) = w. Como dim V é finita, então existe única $S^*: V \to V$ (ver Teorema 4.3). Seja $T = S^*$. Consequentemente, pela Definição 4.2, obtemos

$$f(u,v) = g(u) = \langle u, S(v) \rangle = \langle S^*(u), v \rangle = \langle T(u), v \rangle,$$

para todo $u,v\in V$. Vamos verificar que T é único. Suponha que existe um operador P : $V\to V$ linear tal que

$$f(u, v) = \langle P(u), v \rangle = \langle T(u), v \rangle,$$

para todo $u, v \in V$. Por conseguinte, $\langle P(u) - T(u), v \rangle = 0$, para todo $u, v \in V$. Pela Proposição 1.1, temos que P(u) - T(u) = 0, para todo $u \in V$. Por fim, T(u) = P(u), para todo $u \in V$. Ou seja, T é o único que satisfaz $f(u, v) = \langle T(u), v \rangle$, para todo $u, v \in V$. Assim, f(u, v) = f(v, u) se, e somente se, $\langle T(u), v \rangle = \langle T(v), u \rangle$. Portanto, T é auto-adjunto, ver Definição 5.1. \square

Exemplo 8.9. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ dado por f((x,y),(a,b)) = -2xb + 2ya. Vimos no exemplo 8.2, que f é uma forma bilinear. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ um operador linear definido por T(x,y) = (2y,-2x), então

$$f((x,y),(a,b)) = -2xb + 2ya = \langle (2y, -2x), (a,b) \rangle = \langle T(x,y), (a,b) \rangle,$$

para todo $(x,y),(a,b) \in \mathbb{R}^2$. Vimos no exemplo 8.8, que f é anti-simétrica.

Prezado aluno, na Observação da Definição 8.1, informamos que B(V) é um espaço vetorial. Com o Teorema 8.1, faz sentido perguntarmos se é possível compararmos dim L(V) com dim B(V) (aqui $L(V) = \{T: V \to V \text{ é linear}\}$ e dim V é finita), já que existe uma relação entre uma forma bilinear e um operador linear. Vejamos o corolário a seguir que responde a esta indagação.

Corolário 8.2. Seja V um espaço vetorial com produto interno $\langle \cdot, \cdot \rangle$ e dimensão finita. Então B(V) é isomorfo a L(V). Em particular, $\dim B(V) = \dim L(V) = (\dim V)^2$.

Demonstração. Seja $f \in B(V)$ (ver Definição 8.1). Pelo Teorema 8.1, existe um único $T \in L(V)$ tal que $f(u,v) = \langle T(u),v \rangle$, para todo $u,v \in V$. Defina $\Phi: B(V) \to L(V)$ por $\Phi(f) = T$. Mostre que Φ é um isomorfismo, isto é, Φ é uma transformação linear bijetora. Em particular, pelo Teorema do núcleo e imagem, temos que

$$\dim B(V) = \dim L(V) = (\dim V)^2.$$

8.2.4 Matrizes de Formas Bilineares

Caro aluno, agora, vamos estabelecer a ideia de matriz de uma forma bilinear para um espaço vetorial de dimensão finita.

Definição 8.3. Seja V um espaço vetorial de dimensão finita. Seja $\beta = \{v_1, v_2, ..., v_n\}$ uma base de V. A matriz da forma bilinear $f: V \times V \to \mathbb{R}$ em relação à base β é dada por $[f]_{\beta} = (f(v_j, v_i))$, ou seja,

$$[f]_{\beta} = \begin{pmatrix} f(v_1, v_1) & f(v_2, v_1) & \dots & f(v_n, v_1) \\ f(v_1, v_2) & f(v_2, v_2) & \dots & f(v_n, v_2) \\ \dots & \dots & \dots & \dots \\ f(v_1, v_n) & f(v_2, v_1) & \dots & f(v_n, v_n) \end{pmatrix}.$$

Exemplo 8.10. Seja f((x,y),(a,b)) = 3xa - 2xb + 5ya + 7yb a forma bilinear do exemplo 8.1. Vamos encontrar a matriz de f em relação à base canônica de \mathbb{R}^2 (ver exemplo 2.8).

$$\begin{pmatrix} f((1,0),(1,0)) & f((0,1),(1,0)) \\ f((1,0),(0,1)) & f((0,1),(0,1)) \end{pmatrix} = \begin{pmatrix} 3 & 5 \\ -2 & 7 \end{pmatrix}.$$

Obs 8.2. Seja V um espaço vetorial com produto interno $\langle \cdot, \cdot \rangle$ e dimensão finita. Seja f uma forma bilinear. Vimos, no Teorema 8.1, que existe um único T tal que $f(u, v) = \langle T(u), v \rangle$,

para todo $u, v \in V$. Seja $\beta = \{v_1, v_2, ..., v_n\}$ uma base ortonormal de V, então

$$[f]_{\beta} = \begin{pmatrix} f(v_{1}, v_{1}) & f(v_{2}, v_{1}) & \dots & f(v_{n}, v_{1}) \\ f(v_{1}, v_{2}) & f(v_{2}, v_{2}) & \dots & f(v_{n}, v_{2}) \\ \dots & \dots & \dots & \dots \\ f(v_{1}, v_{n}) & f(v_{2}, v_{1}) & \dots & f(v_{n}, v_{n}) \end{pmatrix}$$

$$= \begin{pmatrix} \langle T(v_{1}), v_{1} \rangle & \langle T(v_{2}), v_{1} \rangle & \dots & \langle T(v_{n}), v_{1} \rangle \\ \langle T(v_{1}), v_{2} \rangle & \langle T(v_{2}), v_{2} \rangle & \dots & \langle T(v_{n}), v_{2} \rangle \\ \dots & \dots & \dots & \dots \\ \langle T(v_{1}), v_{n} \rangle & \langle T(v_{2}), v_{n} \rangle & \dots & \langle T(v_{n}), v_{n} \rangle \end{pmatrix}$$

$$= [T]_{\beta}.$$

Teorema 8.3. Seja V um espaço vetorial com produto interno $\langle \cdot, \cdot \rangle$ e dimensão finita. Seja $f: V \times V \to \mathbb{R}$ uma forma bilinear simétrica. Então existe uma base ortonormal de V tal que $[f]_{\beta}$ é diagonal.

Demonstração. Usando o Teorema 8.1, temos que existe um único operador auto-adjunto T tal que $f(u,v) = \langle T(u),v \rangle$, para todo $u,v \in V$, pois f é simétrica. Agora, utilizando o Teorema 5.2, temos que existe uma base ortonormal β tal que $[T]_{\beta}$ é diagonal. Mas, pela observação 8.2, sabemos que $[f]_{\beta} = [T]_{\beta}$. Logo, $[f]_{\beta}$ é diagonal.

Exemplo 8.11. Verifique que f((x,y),(a,b)) = ax + 2ay + 2bx - 2by é uma forma bilinear. Seja T(x,y) = (x+2y,2x-2y) um operador linear (verifique). Veja que,

$$[T]_c = \left(\begin{array}{cc} 1 & 2\\ 2 & -2 \end{array}\right),$$

onde c é a base canônica de \mathbb{R}^2 . Como $[T]_c$ é simétrica, então pelo Teorema 5.1, T é autoadjunto. Mas,

$$f((x,y),(a,b)) = \langle T(x,y),(a,b)\rangle,$$

para todo $(x,y), (a,b) \in \mathbb{R}^2$ (verifique). Dessa forma, pelo Teorema 8.1, temos que f é uma forma bilinear simétrica. Usando o exemplo 4.11 e a observação 8.2, concluímos que

$$[f]_{\beta} = [T]_{\beta} = \begin{pmatrix} -3 & 0 \\ 0 & 2 \end{pmatrix},$$

onde $\beta = \left\{ \left(\frac{1}{\sqrt{5}}, \frac{-2}{\sqrt{5}} \right), \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \right) \right\}$ é uma base ortonormal.

Exercícios de Fixação

- 1. Seja $f:V\times V\to\mathbb{R}$ uma forma bilinear. Provar que
- i) $f(\mathbf{0}, v) = f(v, \mathbf{0}) = 0;$

ii)
$$f\left(\sum_{i=1}^n \lambda_i v_i, v\right) = \sum_{i=1}^n \lambda_i f(v_i, v);$$

iii)
$$f\left(v, \sum_{j=1}^{m} \lambda_j v_j\right) = \sum_{j=1}^{m} \lambda_j f(v, v_j);$$

iv)
$$f\left(\sum_{i=1}^n \beta_i v_i, \sum_{j=1}^m \lambda_j v_j\right) = \sum_{i=1}^n \sum_{j=1}^m \beta_i \lambda_j f(v_i, v_j).$$

- 2. Sejam $u=(x_1,x_2)$ e $v=(y_1,y_2)\in\mathbb{R}^2$. Quais das seguintes funções são formas bilineares:
- i) $f(u,v) = x_1 y_1;$
- **ii)** $f(u,v) = x_1 y_2;$
- iii) $f(u,v) = x_1(y_1 + y_2);$
- **iv)** f(u,v) = 0;
- **v)** $f(u,v) = x_1^2 + x_2y_1$.
- 3. Calcular a matriz das formas bilineares da questão anterior em relação à base canônica.
- **4.** Seja $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ dada por $f((x_1, x_2), (y_1, y_2)) = x_1y_1 + x_2y_2$. Encontre a matriz de f em relação a cada uma das bases abaixo:

$$\{(1,0),(0,1)\}\ e\ \{(1,-1),(1,1)\}.$$

- **5.** Seja $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ dada por $f((x_1, x_2), (y_1, y_2)) = x_1y_1 + 4x_2y_2 + 2x_1y_2 + 2x_2y_1$. Encontre uma base β de \mathbb{R}^2 tal que $[f]_{\beta}$ é diagonal.
- 6. Escreva a expressão geral de uma forma bilinear simétrica sobre \mathbb{R}^2 e \mathbb{R}^3 .
- 7. Escreva a expressão geral de uma forma bilinear anti-simétrica sobre \mathbb{R}^2 e \mathbb{R}^3 .

8.3 Formas Quadráticas

Caros aluno, nesta seção, utilizaremos o método de Lagrange para diagonalizar formas quadráticas simétricas. Além disso, enunciaremos e provaremos a Lei da Inércia proposta por Sylvester.

Definição 8.4 (Forma Quadrática). Seja V um espaço vetorial. Seja $f: V \times V \to \mathbb{R}$ uma forma bilinear simétrica. Uma aplicação $q: V \to \mathbb{R}$, definida por

$$q(v) = f(v, v),$$

para todo $v \in V$, é chamada forma quadrática sobre V.

Exemplo 8.12. f((x,y),(a,b)) = xa - 5xb - 5ya + yb é uma forma bilinear simétrica (verifique!). Logo, $q: \mathbb{R}^2 \to \mathbb{R}$, dada por

$$q(x,y) = f((x,y),(x,y)) = x^2 - 10xy + y^2,$$

é uma forma quadrática.

Exemplo 8.13. Mostre que f((x,y),(a,b)) = 3xa - yb é uma forma bilinear simétrica. Com isso, $g: \mathbb{R}^2 \to \mathbb{R}$, definida por

$$q(x,y) = f((x,y),(x,y)) = 3x^2 - y^2 = 0,$$

é uma forma quadrática.

Exemplo 8.14. Seja V um espaço vetorial com produto interno $\langle \cdot, \cdot \rangle$. Vimos no exemplo 8.3 que o produto interno é uma forma bilinear. Logo $q: V \to \mathbb{R}$, dado por

$$q(v) = \langle v, v \rangle = ||v||^2, \forall v \in V,$$

é uma forma quadrática.

Obs 8.3. Se em vez da forma bilinear $f: V \times V \to \mathbb{R}$ tomarmos a forma bilinear simétrica

$$g(u, v) = \frac{1}{2} [f(u, v) + f(v, u)],$$

temos ainda que q(v) = f(v, v) = g(v, v). Portanto, não há perda de generalidade em se exigir que a forma quadrática provenha de uma forma bilinear simétrica.

Definição 8.5. Seja V um espaço vetorial. Seja U subespaço vetorial de V. Seja $q:V\to\mathbb{R}$ uma forma quadrática. Dizemos que q é positiva em U, e escrevemos q>0, se q(u)>0, para todo $u\in U$ não-nulo.

Obs 8.4. Analogamente, podemos definir formas quadráticas negativas, não-negativas, não-positivas ...

Obs 8.5. Quando q é positiva, negativa, não-negativa ou não-positiva, dizemos que q é uma forma quadrática definida em U. Caso contrário q é dita indefinida em U.

Exemplo 8.15. Considere a forma quadrática

$$q(x,y) = ||(x,y)||^2 = x^2 + y^2,$$

vista no exemplo 8.14. Note que $q(x,y)=x^2+y^2>0$, para todo $(x,y)\neq (0,0)\in \mathbb{R}^2$, pois $x^2+y^2=0$ se, e somente se, x=y=0. Isto nos diz que q é uma forma quadrática positiva em \mathbb{R}^2 .

8.3.1 Resultados Importantes

Caros alunos, nesta seção, poderíamos trabalhar em um espaço vetorial arbitrário V com dimensão finita n. Porém, este espaço é facilmente identificado, através do isomorfismo $T:V\to\mathbb{R}^n$, definido por $T(v)=[v]_\beta$ (β é uma base ortonormal de V), com \mathbb{R}^n . Portanto, por conveniência, as formas quadráticas que aparecem aqui estão definidas sobre \mathbb{R}^n . Com estas considerações, veremos dois importantíssimos Teoremas que trabalham com a diagonalização de uma forma quadrática.

Teorema 8.4 (Teorema de Lagrange). Seja $q: \mathbb{R}^n \to \mathbb{R}$ uma forma quadrática. Então existe uma mudança de coordenadas de modo que nas novas coordenadas a forma quadrática é diagonal, isto é,

$$q(y_1, y_2, ..., y_n) = d_1 y_1^2 + d_2 y_2^2 + ... + d_n y_n^2$$

Antes de vermos a prova do Teorema 8.4, ilustremos com um exemplo o algoritmo que será utilizado para diagonalizar formas quadráticas simétricas. Este algoritmo é chamado Método de Lagrange.

Exemplo 8.16 (Método de Lagrange em \mathbb{R}^3). Seja $q:\mathbb{R}^3\to\mathbb{R}$ dada por

$$q(a,b,c) = 2a^2 - 3b^2 + c^2 - 2ab + 4ac - 4bc.$$

Mostre que q é uma forma quadrática (veja como obter a forma bilinear que gerou esta forma quadrática na lista de exercícios). Note que

$$\begin{split} q(a,b,c) &= 2a^2 - 3b^2 + c^2 - 2ab + 4ac - 4bc = 2(a^2 - ab + 2ac) - 3b^2 + c^2 - 4bc \\ &= 2\left[a^2 - 2a\left(\frac{b - 2c}{2}\right)\right] - 3b^2 + c^2 - 4bc \\ &= 2\left[a - \left(\frac{b - 2c}{2}\right)\right]^2 - 2\left(\frac{b - 2c}{2}\right)^2 - 3b^2 + c^2 - 4bc \\ &= 2\left[a - \left(\frac{b - 2c}{2}\right)\right]^2 - \frac{b^2}{2} + 2bc - 2c^2 - 3b^2 + c^2 - 4bc \\ &= 2\left[a - \left(\frac{b - 2c}{2}\right)\right]^2 - \frac{7b^2}{2} - 2bc - c^2 \\ &= 2\left[a - \left(\frac{b - 2c}{2}\right)\right]^2 - \frac{7}{2}\left(b^2 + 2\frac{2}{7}bc\right) - c^2 \\ &= 2\left[a - \left(\frac{b - 2c}{2}\right)\right]^2 - \frac{7}{2}\left(b + \frac{2}{7}c\right)^2 + \frac{2}{7}c^2 - c^2 \\ &= 2\left[a - \left(\frac{b - 2c}{2}\right)\right]^2 - \frac{7}{2}\left(b + \frac{2}{7}c\right)^2 - \frac{5}{7}c^2. \end{split}$$

Dessa forma, para $y_1 = a - \left(\frac{b-2c}{2}\right)$, $y_2 = b + \frac{2}{7}c$, $y_3 = c$, obtemos

$$q(y_1, y_2, y_3) = 2y_1^2 - \frac{7}{2}y_2^2 - \frac{5}{7}y_3^2.$$

Logo, q está na forma diagonal, onde $d_1=2, d_2=-\frac{7}{2}, d_3=-\frac{5}{7}.$

Note que o Método de Lagrange pode ser resumido na técnica de completar quadrados. Mas, para isso precisamos seguir algumas regras. Vejamos a prova do Teorema 8.4.

Demonstração. Seja $\{v_1,v_2,...,v_n\}$ a base canônica de \mathbb{R}^n . Então, pelas Definições 8.1 e 8.4, obtemos

$$q(x_1, x_2, ..., x_n) = f((x_1, x_2, ..., x_n), (x_1, x_2, ..., x_n))$$

$$= f\left(\sum_{i=1}^{n} x_i v_i, \sum_{j=1}^{n} x_j v_j\right)$$
$$= \sum_{i,j=1}^{n} x_i x_j f(v_i, v_j),$$

onde f é uma forma bilinear que gera q. Seja $a_{ij}=f(v_i,v_j)$. Assim,

$$q(x_1, x_2, ..., x_n) = \sum_{i,j=1}^{n} a_{ij} x_i x_j.$$
(8.1)

Como q é uma forma quadrática, então f é simétrica (ver Definição 8.4). Portanto,

$$a_{ij} = f(v_i, v_j) = f(v_j, v_i) = a_{ji}.$$

Se $a_{ij} = 0$, para todo i, j, então $q(x_1, ..., x_n) = 0$, ou seja q está na forma diagonal com $d_1 = d_2 = ... = d_n = 0$. Afirmamos que podemos considerar que $a_{11} \neq 0$. De fato, suponha que $a_{ii} = 0$, para todo i e que existam i, j tais que $a_{ij} \neq 0$, com $i \neq j$. Sem perda de generalidade, considere que $a_{12} \neq 0$. Daí, as parcelas que contém x_1 e x_2 em (8.1) satisfazem

$$a_{12}x_1x_2 + a_{21}x_2x_1 = a_{12}x_1x_2 + a_{12}x_1x_2 = 2a_{12}x_1x_2.$$

Faça a mudança de variável $x_1 = z_1 - z_2$ e $x_2 = z_1 + z_2$, temos que

$$2a_{12}x_1x_2 = 2a_{12}(z_1 - z_2)(z_1 + z_2) = 2a_{12}z_1^2 - 2a_{12}z_2^2.$$

Como o termo que multiplica z_1^2 é diferente de zero, podemos considerar que $a_{11} \neq 0$. Com isso, agrupando os termos que contém x_1 , obtemos

$$a_{11}x_1^2 + 2\sum_{j=2}^n a_{1j}x_1x_j = a_{11}\left(x_1^2 + \frac{2x_1}{a_{11}}\sum_{j=2}^n a_{1j}x_j\right)$$
$$= a_{11}\left(x_1 + \frac{1}{a_{11}}\sum_{j=2}^n a_{1j}x_j\right)^2 - \frac{1}{a_{11}}\left(\sum_{j=2}^n a_{1j}x_j\right)^2.$$

Sejam

$$y_1 = x_1 + \frac{1}{a_{11}} \sum_{j=2}^{n} a_{1j} x_j, \ y_2 = x_2, ..., \ y_n = x_n.$$

Portanto,

$$q(y_1, y_2, ..., y_n) = a_{11}y_1^2 + q_1(y_2, y_3, ..., y_n),$$

onde q_1 é uma forma quadrática. Repita o processo para q_1 concluindo assim a diagonalização.

Exemplo 8.17. Seja $q: \mathbb{R}^2 \to \mathbb{R}$ dado por q(x,y) = xy, para todo $(x,y) \in \mathbb{R}^2$. Apliquemos o Teorema 8.4. Sejam

$$x = y_1 - y_2$$
 e $y = y_1 + y_2$, ou seja, $y_1 = \frac{x+y}{2}$ e $y_2 = \frac{y-x}{2}$.

Daí,

$$q(y_1, y_2) = (y_1 - y_2)(y_1 + y_2) = y_1^2 - y_2^2$$

Agora, veremos um resultado conhecido como Lei da Inércia.

Teorema 8.5 (Teorema de Sylvester). Seja $q: \mathbb{R}^n \to \mathbb{R}$ uma forma quadrática. O número de termos positivos, negativos e nulos entre os coeficientes d_i , da diagonalização de q no Teorema 8.4, é sempre o mesmo.

Demonstração. Sabemos, pelo Teorema 8.4, que é possível diagonalizar q. Digamos que

$$q(y_1, y_2, ..., y_n) = d_1 y_1^2 + d_2 y_2^2 + ... + d_n y_n^2$$

é uma diagonalização de q. Denote por m_+, m_-, m_0 o número de di's positivos, negativos e nulos, respectivamente. Vamos primeiramente provar a seguinte afirmação

$$m_+ = \max\{\dim U : q > 0 \text{ em } U\},\$$

onde este máximo é tomado em todos os subespaços U de V. Reordene a diagonalização de q de forma que $d_1, d_2, ..., d_{m_+}$ sejam positivos, isto é,

$$q(y_1, y_2, ..., y_n) = d_1 y_1^2 + d_2 y_2^2 + ... + d_{m_+} y_{m_+}^2 + d_{m_++1} y_{m_++1}^2 + ... + d_n y_n^2.$$

Seja $U^+ = \{(y_1, y_2, ..., y_{m_+}, 0, ..., 0)\}$ um subespaço de \mathbb{R}^n (verifique). Note que dim $U^+ = m_+$ (verifique). Por outro lado,

$$m_{+} = \dim U^{+} \le \max\{\dim U : q > 0 \text{ em } U\},\$$

pois,

$$\begin{aligned} q(y_1,y_2,...,y_{m_+},0,...,0) &= d_1y_1^2 + d_2y_2^2 + ... + d_{m_+}y_{m_+}^2 + d_{m_++1}0 + ... + d_n0 \\ &= d_1y_1^2 + d_2y_2^2 + ... + d_{m_+}y_{m_+}^2 > 0, \end{aligned}$$

relembre a definição de máximo. Suponha que existe U subespaço de \mathbb{R}^n tal que q>0 em U e dim $U>m_+$. Defina $T:U\to U^+$, por

$$T(y_1,...,y_n) = (y_1, y_2,..., y_{m+}, 0,..., 0).$$

Verifique que T é linear. Pela própria definição T é sobrejetiva, já que $(y_1, y_2, ..., y_{m_+}, 0, ..., 0)$ define os elementos de U^+ . Como

$$\dim U > m_+ = \dim U^+,$$

então, pelo Teorema do núcleo e imagem, T não é injetiva. Dessa forma, existe

$$(y_1,...,y_n) \neq (0,...,0)$$
 em U

tal que

$$T(y_1, ..., y_n) = (0, ..., 0).$$

Consequentemente,

$$(y_1, y_2, ..., y_{m_+}, 0, ..., 0) = (0, ..., 0).$$

Isto nos diz que $y_1 = y_2 = \dots = y_{m_+} = 0$. Portanto,

$$q(y_1, y_2, ..., y_n) = q(0, ..., 0, y_{m_{+}+1}, ..., y_n) = d_{m_{+}+1}y_{m_{+}+1}^2 + ... + d_ny_n^2 \le 0,$$

mas q > 0 em U (ver Definição 8.5). Isto gera um absurdo. Logo,

$$m_{+} = \max\{\dim U : q > 0 \text{ em } U\}.$$

Veja que nesta definição de máximo não interessa como q está diagonalizado. Analogamente, prova-se que $m_- = \max\{\dim U: q < 0 \text{ em } U\}$. Mas $m_0 = n - m_+ - m_-$. Isto conclui a prova do Teorema.

Exemplo 8.18. Vimos no exemplo 8.17 que a forma quadrática q(x,y) = xy pode ser

diagonalizada. A diagonalização encontrada foi $q(y_1,y_2)=y_1^2-y_2^2$. Aqui,

$$m_{+} = 1, m_{-} = 1, m_{0} = 0,$$

pois $d_1 = 1$ (um positivo), $d_2 = -1$ (um negativo).

Exercícios de Fixação

1. Seja $f:V\times V\to\mathbb{R}$ uma forma bilinear. Mostre que

$$f(u,v) + f(v,u) = \frac{1}{2}[q(u+v) - q(u-v)],$$

para todo $u, v \in V$, onde $q: V \to \mathbb{R}$ é uma forma quadrática proveniente de f. Conclua que, se f é simétrica é possível encontrar f em função de q.

- **2.** Seja $q: \mathbb{R}^3 \to \mathbb{R}$ dada por $q(x_1, x_2, x_3) = x_1x_2 + 2x_1x_3 + x_3^2$. Diagonalize q pelo método de Lagrange.
- **3.** Qual forma bilinear simétrica que dá origem à forma quadrática sobre \mathbb{R}^3 :
- i) $q(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 2x_1x_2 + 4x_1x_3 x_2x_3;$
- ii) $q(x_1, x_2, x_3) = x_1^2 x_2^2 + 4x_2x_3;$
- iii) $q(x_1, x_2, x_3) = 2(x_1x_2 + x_1x_3 + x_2x_3).$
- **4.** Reduzir à forma diagonal, pelo método de Lagrange, as seguint es formas quadráticas sobre \mathbb{R}^2 :
- i) $x_1^2 + x_2^2 + 2x_1x_2$;
- **ii)** $x_1^2 + x_2^2 2x_1x_2$;
- **iii)** $x_1^2 x_2^2 + 2x_1x_2$;
- **iv**) $x_2^2 + 4x_1x_2$;
- **v)** $4x_1x_2$.
- 5. Chamamos de assinatura de uma forma quadrática o número p-n, onde p e n são a quantidade de coeficientes positivos e negativos, respectivamente, na diagonalização desta forma (ver Teorema 8.4). Encontre as assinaturas das formas quadráticas da questão anterior.

8.4 Conclusão

Concluímos que uma forma bilinear simétrica é diagonalizável e a forma quadrática pode ser escrita como um polinômio quadrático somente com termos de segunda ordem tendo a quantidade de coeficientes positivos e negativos fixados.

8.5 Exercícios Propostos

- **1.** Seja $f: V \times V \to \mathbb{R}$ uma forma bilinear. Seja v_0 um vetor fixado em V e defina $U = \{v \in V : f(v_0, v) = 0\}$. Prove que U é subespaço de V.
- **2.** Seja V um espaço vetorial. Mostre que $B(V) = \{f : V \times V \to \mathbb{R} : f \text{ \'e} \text{ uma forma bilinear}\}$ é um espaço vetorial quando está munido das operações
- i) (f+g)(u,v) = f(u,v) + g(u,v);
- ii) $(\lambda f)(u,v) = \lambda f(u,v)$, para todo $u,v \in V$ e $\lambda \in \mathbb{R}$.
- 3. Seja $f: V \times V \to \mathbb{R}$ uma forma, onde V é um espaço vetorial com produto interno e dimensão finita. Seja β uma base de V Seja $A = [f]_{\beta}$. Definimos o posto de f como sendo o posto de A.
- i) Mostre que o posto de uma forma está bem definido;
- ii) Se o posto de $f \in I$, mostre que existem funcionais lineares g, h tais que f(u, v) = g(u)h(v), para todo $u, v \in V$.
- **4.** Seja $f: V \times V \to \mathbb{R}$ uma forma bilinear. Mostre que

$$q(u + v) + q(u - v) = 2(q(u) + q(v)),$$

para todo $u, v \in V$, onde $q: V \to \mathbb{R}$ é uma forma quadrática proviniente de f.

5. Considere a forma quadrática $q: \mathbb{R}^4 \to \mathbb{R}$ definida por

$$q(x_1, x_2, x_3, x_4) = x_1^2 + 6x_1x_2 + 5x_2^2 - 4x_1x_3 - 12x_2x_3 + 4x_3^2 - 4x_2x_4 - x_3x_4 - x_4^2$$

Coloque q na forma diagonal.

Próxima Aula

Começaremos a estudar na próxima aula formas de simplificar a representação matricial de um operador linear não necessariamente diagonalizável.

Referências Bibliográficas

- [1] BUENO, H. P., Álgebra Linear Um Segundo Curso, Primeira Edição, Rio de Janeiro, SBM, 2006.
- [2] CALLIOLI, C. A., DOMINGUES, H. H., COSTA, R. C. F. Álgebra Linear e Aplicações, Sexta Edição, São Paulo, Editora Atual, 1995.
- [3] COELHO, F. O., LOURENÇO, M. L., *Um Curso de Álgebra Linear*, Edição 2001, São Paulo, EdusP, 2004.
- [4] HOFFMAN, K., KUNZE, R., *Linear Algebra*, Second Edition, New Jersey, Prentice-Hall, Inc., Englewood Cliffs, 1971.
- [5] LANG, S., Álgebra Linear, Primeira Edição, New York, Ed. ciência Moderna, 2003.
- [6] LIPSCHUTZ, S., Álgebra Linear, Terceira Edição, São Paulo, Schaum McGraw-Hill Makron Books, 1994.
- [7] SILVA, A., *Introdução à Álgebra*, Primeira Edição, Editora Universitária UFPB, João Pessoa, 2007.

Professor Revisor

Professor Paulo de Souza Rabelo.