1 LIVRO

Regra da Cadeia e Derivação Implícita

13 AULA

META

Derivar funções compostas e funções definidas implicitamente.

OBJETIVOS

Estender os conceitos da regra da cadeia e da derivação implícita de funções de uma variável a valores reais.

PRÉ-REQUISITOS

Ter compreendido os conceitos limite, continuidade e derivadas de funções de uma variável a valores reais.

13.1 Introdução

13.2 Regra da Cadeia

Muitas vezes a função z=f(x,y) é dada sob a forma de função composta, em que os argumentos $x,\ y$ são eles próprios funções de t

$$x = \phi_1(t)$$
 $y = \phi_2(t)$.

Então, $z = f(\phi_1(t), \phi_2(t))$ e podemos, portanto, falar em diferenciabilidade relativamente a t.

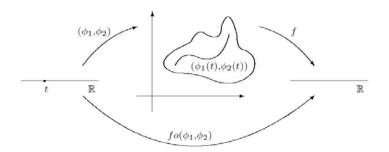


Figura 13.72: Função composta.

Para derivarmos z em função de t temos o seguinte:

Teorema 13.28. Sejam $x = \phi_1(t)$ e $y = \phi_2(t)$ diferenciáveis em t_0 e z = f(x, y) diferenciável no ponto $P_0 = (\phi_1(t_0), \phi_2(t_0))$. Então $z(t) = f(\phi_1(t), \phi_2(t))$ é diferenciável em t_0 e ainda

$$\left(\frac{dz}{dt}\right)_{t_0} = \left(\frac{dz}{dx}\right)_{P_0} \cdot \left(\frac{d\phi_1}{dt}\right)_{t_0} + \left(\frac{dz}{dy}\right)_{P_0} \cdot \left(\frac{d\phi_2}{dt}\right)_{t_0}.$$

Demonstração: Como z é diferenciável em P_0 , temos em particular que:

$$\Delta z = \left(\frac{\partial z}{dx}\right)_{P_0} \cdot \Delta x + \left(\frac{\partial z}{dy}\right)_{P_0} \cdot \Delta y + \alpha \eta$$

onde $\eta \longrightarrow 0$ com $\alpha \longrightarrow 0$ e $\alpha = \sqrt{(\Delta x)^2 + (\Delta y)^2}$ sendo que

$$\Delta x = \phi_1(t_0 + \Delta t) - \phi_1(t_0)$$
 e $\Delta y = \phi_2(t_0 + \Delta t) - \phi_2(t_0)$.

Logo, para $\Delta t \neq 0$

$$\frac{\Delta z}{\Delta t} = \left(\frac{\partial z}{\partial x}\right)_{P_0} \cdot \frac{\Delta x}{\Delta t} + \left(\frac{\partial z}{\partial y}\right)_{P_0} \cdot \frac{\Delta y}{\Delta t} \pm \eta \sqrt{\left(\frac{\Delta x}{\Delta t}\right)^2 + \left(\frac{\Delta y}{\Delta t}\right)^2} (13.1)$$

Observemos que

$$\lim_{\Delta t \longrightarrow 0} \frac{\Delta x}{\Delta t} = \left(\frac{d\phi_1}{\Delta t}\right)_{t_0} \quad \text{e} \quad \lim_{\Delta t \longrightarrow 0} \frac{\Delta y}{\Delta t} = \left(\frac{d\phi_2}{\Delta t}\right)_{t_0}$$

ainda:

$$\Delta t \longrightarrow 0 \Longrightarrow [\Delta x \longrightarrow 0 \text{ e } \Delta y \longrightarrow 0],$$

pois ϕ_1 e ϕ_2 sendo diferenciáveis em t_0 são contínuas em t_0 . Passando ao limite a expressão (13.1) com $\Delta t \longrightarrow 0$, temos

$$\left(\frac{dz}{dt}\right)_{t_0} = \left(\frac{dz}{dx}\right)_{P_0} \cdot \left(\frac{d\phi_1}{dt}\right)_{t_0} + \left(\frac{dz}{dy}\right)_{P_0} \cdot \left(\frac{d\phi_2}{dt}\right)_{t_0}.$$

pois
$$\eta \longrightarrow 0$$
 com $\Delta t \longrightarrow 0$ e $\left[\left(\frac{\Delta x}{\Delta t} \right)^2 + \left(\frac{\Delta y}{\Delta t} \right)^2 \right] \longrightarrow L \in \mathbb{R}$ com $\Delta t \longrightarrow 0$.

Exemplo 13.2.1. Seja $z = f(x, y) = e^{xy}$ onde x = sen t e y = cos t. Calcule $\frac{dz}{dt}$ em $t = t_0$.

Solução: Temos que $P_0 = (\phi_1(t_0), \phi_2(t_0)) = (sen \ t_0, \ cos \ t_0).$ Logo

$$\left(\frac{dz}{dt}\right)_{t_0} = \left(\frac{dz}{dx}\right)_{P_0} \cdot \left(\frac{d\phi_1}{dt}\right)_{t_0} + \left(\frac{dz}{dy}\right)_{P_0} \cdot \left(\frac{d\phi_2}{dt}\right)_{t_0},$$

ou seja,

$$\left(\frac{dz}{dt}\right)_{t_0} = (y_0 e^{x_0 y_0}) \cdot (\cos t_0) + (x_0 e^{x_0 y_0}) \cdot (-\sin t_0)$$
$$= e^{\sin t_0 \cos t_0} (\cos^2 t_0 - \sin^2 t_0).$$

É freqüente encontrar-se z=f(x,y) com y=y(x). Neste caso, z = f(x, y(x)) = z(x). Ainda

$$\frac{dz}{dx} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dx} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dx}.$$

Portanto,

$$\frac{dz}{dx} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dx}.$$

Exemplo 13.2.2. Seja $z = f(x, y) = x^2 + y^2$. Considere a curva $y = \phi(x) = x^3$ e calcule:

- $(a) \frac{\partial z}{\partial x} (1,1)$ $(b) \frac{dz}{dx} (1)$

Solução:

(a) Temos que

$$\frac{\partial z}{\partial x} = 2x + 2y\frac{dy}{dx} = 2x + 6yx^2.$$

$$\operatorname{Logo}\,\frac{\partial z}{\partial x}(1,1) = 2\cdot 1 + 6\cdot 1\cdot 1^2 = 8.$$

$$(b) \ \frac{dz}{dx}(1) = \frac{\partial z}{\partial x}(1,1) + \frac{\partial z}{\partial y}(1,1) \cdot \frac{dy}{dx}(1) = 8 + 1 \cdot 3 = 11.$$

13.3 Derivação de funções definidas implicitamente

A Regra da Cadeia pode ser usada para uma descrição do processo de diferenciação implícita. Suponhamos que a equação da forma F(x,y)=0 define y implicitamente como uma função diferenciável de x, ou seja, y = f(x), onde F(x, f(x)) = 0, para todo x no domínio de f. Se F é diferenciável, podemos usar a Regra da

Cadeira para diferenciar ambos os lados da equação F(x,y) = 0 com relação a x. Como x e y são ambas funções de x, obtemos:

$$\frac{\partial F}{\partial x}\frac{dx}{dx} + \frac{\partial F}{\partial y}\frac{dy}{dx} = 0.$$

No entanto, $\frac{dx}{dx}=1$; então, se $\frac{\partial F}{\partial y}\neq 0$, resolvemos para $\frac{dy}{dx}$ e obtemos

$$\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}. (13.1)$$

Para derivar essa equação assumimos que F(x,y) = 0 define y implicitamente em função de x. O próximo teorema nos fornece condições segundo as quais essa hipótese é válida.

Teorema 13.29. (Teorema da Função Implícita) Seja $F:A\subset\mathbb{R}^2$ onde A é um aberto e F é de classe C^k , $(k\geq 1)$ em A. Se F se anula em $P_0=(x_0,y_0)\in A$ e $\frac{\partial F}{\partial y}(P_0)\neq 0$, então existe um intervalo aberto I contendo x_0 e um aberto $B\subset A$, $P_0\in B$ com a seguinte propriedade:

Para cada $x \in I$ existe um único $\xi(x) \in \mathbb{R}$ tal que $(x, \xi(x)) \in B$ e $F(x, \xi(x)) = 0$, ou seja, F(x, y) = 0 define $y = \xi(x)$, implicitamente.

Exemplo 13.3.1. Mostre que existe um intervalo I contendo $x_0 = 2$, no qual está definida da função $y = \xi(x)$ satisfazendo $x^2 + xy + y^2 = 7$ com $\xi(2) = 1$ e encontre $\frac{dy}{dx}$.

Solução: Definimos

$$F(x,y) = x^2 + xy + y^2 - 7.$$

Observemos que F é de classe C^{∞} em \mathbb{R}^2 ,

$$F(2,1) = 0 \text{ e } \frac{\partial F}{\partial y}(2,1) = 4 \neq 0.$$

Pelo Teorema anterior, existe um intervalo I contendo $x_0=2$ e uma função $y=\xi(x)$, tais que:

$$x^{2} + x\xi(x) + (\xi(x))^{2} = 7, \ \forall x \in I.$$

Ainda: $\xi(2) = 1$, ξ é de classe C^{∞} . Temos então que F(x,y) = 0 define $y = \xi(x)$ implicitamente, logo, usando a fórmula 13.1, obtemos

$$\xi'(x) = \frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = -\frac{2x+y}{x+2y}.$$

Em particular, $\xi'(2) = -\frac{5}{4}$.

Suponhamos agora que z seja dado implicitamente como uma função z=f(x,y) por uma equação da forma F(x,y,z)=0. Isto é o mesmo que F(x,y,f(x,y))=0 para todo (x,y) no domínio de f. Se F e f forem diferenciáveis, utilizamos a Regra da Cadeia para diferenciar a equação F(x,y,z)=0 como se segue:

$$\frac{\partial F}{\partial x}\frac{\partial x}{\partial x} + \frac{\partial F}{\partial y}\frac{\partial y}{\partial x} + \frac{\partial F}{\partial z}\frac{\partial z}{\partial x} = 0.$$

Mas $\frac{\partial x}{\partial x}=1$ e $\frac{\partial y}{\partial x}=0$ portanto, essa equação se escreve

$$\frac{\partial F}{\partial x} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial x} = 0.$$

Se $\frac{\partial F}{\partial z} \neq 0,$ resolvendo para $\frac{\partial z}{\partial x}$ e obtemos:

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial x}}.$$
 (13.2)

Analogamente, obtemos

$$\frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}.$$
 (13.3)

Novamente, uma versão do Teorema da Função Implícita nos dá as condições sob as quais nossa hipótese é válida. Se $F \in$

 C^k , $(k \ge 1)$ é definida em um aberto contendo $P_0 = (x_0, y_0, z_0)$, onde $F(P_0) = 0$ e $\frac{\partial F}{\partial z}(P_0) \ne 0$, então a equação F(x, y, z) = 0 define z como uma função de x e y perto do ponto P_0 , e as derivadas parciais dessa função são dadas pelas fórmulas (13.2) e (13.3).

Exemplo 13.3.2. Determine $\frac{\partial z}{\partial x}$ e $\frac{\partial z}{\partial y}$ se $e^{xyz}=x^2+y^2+z^2$. **Solução:** Seja $F(x,y,z)=e^{xyz}-x^2-y^2-z^2$. Então, das equações (13.2) e (13.3), temos

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} = -\frac{yze^{xyz} - 2x}{xye^{xyz} - 2z}$$
$$\frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}} = -\frac{xze^{xyz} - 2y}{xye^{xyz} - 2z}$$

Outra maneira:

Temos

$$\frac{\partial}{\partial x}(e^{xyz}) = e^{xyz}\frac{\partial}{\partial x}(xyz) = e^{xyz}\left(yz + xy\frac{\partial z}{\partial x}\right)$$

 \mathbf{e}

$$\frac{\partial}{\partial x}(x^2 + y^2 + z^2) = 2x + 2z\frac{\partial z}{\partial x}.$$

Assim

$$e^{xyz}\left(yz+xy\frac{\partial z}{\partial x}\right)=2x+2z\frac{\partial z}{\partial x},$$

ou seja,

$$\frac{\partial z}{\partial x} = \frac{2x - yze^{xyz}}{xye^{xyz} - 2z}$$

em todo $(x, y) \in D(f)$ com $xye^{xyz} - 2z \neq 0$.

13.4 Resumo

A Regra da Cadeia é dada pelo seguinte:

Teorema 13.30. Sejam $x = \phi_1(t)$ e $y = \phi_2(t)$ diferenciáveis em t_0 e z = f(x, y) diferenciável no ponto $P_0 = (\phi_1(t_0), \phi_2(t_0))$. Então $z(t) = f(\phi_1(t), \phi_2(t))$ é diferenciável em t_0 e ainda

$$\left(\frac{dz}{dt}\right)_{t_0} = \left(\frac{dz}{dx}\right)_{P_0} \cdot \left(\frac{d\phi_1}{dt}\right)_{t_0} + \left(\frac{dz}{dy}\right)_{P_0} \cdot \left(\frac{d\phi_2}{dt}\right)_{t_0}.$$

A Regra da Cadeia pode ser usada para uma descrição do processo de diferenciação implícita. Suponhamos que a equação da forma F(x,y)=0 define y implicitamente como uma função diferenciável de x, ou seja, y=f(x), onde F(x,f(x))=0, para todo x no domínio de f. Se F é diferenciável, podemos usar a Regra da Cadeira para diferenciar ambos os lados da equação F(x,y)=0 com relação a x. Como x e y são ambas funções de x, obtemos:

$$\frac{\partial F}{\partial x}\frac{dx}{dx} + \frac{\partial F}{\partial y}\frac{dy}{dx} = 0.$$

No entanto, $\frac{dx}{dx}=1$; então, se $\frac{\partial F}{\partial y}\neq 0$, resolvemos para $\frac{dy}{dx}$ e obtemos

$$\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}.$$

Para derivar essa equação assumimos que F(x,y)=0 define y implicitamente em função de x. O próximo teorema nos fornece condições segundo as quais essa hipótese é válida.

Teorema 13.31. (Teorema da Função Implícita) Seja $F: A \subset \mathbb{R}^2$ onde A é um aberto e F é de classe C^k , $(k \geq 1)$ em A. Se F se anula em $P_0 = (x_0, y_0) \in A$ e $\frac{\partial F}{\partial y}(P_0) \neq 0$, então existe um intervalo aberto I contendo x_0 e um aberto $B \subset A$, $P_0 \in B$ com a seguinte propriedade:

Para cada $x \in I$ existe um único $\xi(x) \in \mathbb{R}$ tal que $(x, \xi(x)) \in B$ e $F(x, \xi(x)) = 0$, ou seja, F(x, y) = 0 define $y = \xi(x)$, implicitamente.

13.5 Atividades

- **01.** Calcule $\frac{dz}{dt}$:
- (a) z = sen xy, x = 3t, $e y = t^2$.
- (a) $z = \ln(1 + x^2 + y^2)$, x = sen 3t, e y = cos 3t.
- **02.** Seja $f(x,y) = x^2 + y^2$. Considere a curva $y = \phi(x) = x^3$ e calcule:
- a) $\frac{\partial z}{\partial x}(1,1)$;
- b) $\frac{dz}{dx}(1)$.
- **03.** Seja $g(t) = f(3t, 2t^2 1)$.
- (a) Expresse g'(t) em termos das derivadas parciais de f.
- (b) Calcule g'(0) admitindo $\frac{\partial f}{\partial x}(0, -1) = \frac{1}{3}$.
- **04.** Suponha que, para todo t, $f(t^2, 2t)=t^3-3t.$ Mostre que $\frac{\partial f}{\partial x}(1,2)=-\frac{\partial f}{\partial y}(1,2).$
- **05.** Considerando a função $F(x,y)=f\left(\frac{x}{y},\ \frac{y}{x}\right)$. Mostre que $x\frac{\partial F}{\partial x}+y\frac{\partial f}{\partial y}=0$.
- 06. A equação $y^3+xy+x^3=4$ define implicitamente alguma função diferenciável y=y(x)? Em caso afirmativo, expresse $\frac{dy}{dx}$ em termos de x e y. (Sugestão: Observe que $(0, \sqrt[3]{4})$ satisfaz a equação e utilize o teorema das funções implícitas para o caso F(x,y)=0)
- 07. Mostre que cada uma das equações seguintes define implicitamente pelo menos uma função diferenciável y=y(x). Expresse $\frac{dy}{dx}$ em termos de x e y.

(a)
$$x^2y + sen y = x$$

(b)
$$y^4 + x^2y^2 + x^4 = 3$$
.

08. Suponha que y=y(x) seja diferenciável e dada implicitamente pela equação $x=F(x^2+y,\ y^2),$ onde F(u,v) é suposta diferenciável. Expresse $\frac{dy}{dx}$ em termos de x,y e das derivadas parciais de F.

13.6 Comentário das Atividades

Essas atividades, são referentes aos assuntos discutidos no decorrer desta aula e têm o objetivo de você (aluno) exercitar os conceitos aprendidos.

Lembre-se, sempre, que existem tutores para ajuda-los na resolução dessas atividades.

13.7 Referências

- GUIDORIZZI, H. L., **Um Curso de Cálculo** (Vol. 1 e 2). Rio de Janeiro: LTC Editora, 2006.
- STEWART, J., Cálculo (vol. 1 e 2). São Paulo: Pioneira Thomson Learning, 2006.
- THOMAS, G. B., **Cálculo** (vol. 1 e 2). São Paulo: Addison Wesley, 2002.