

MECANISMOS DA CIRCULAÇÃO E DO EQUILÍBRIO DO AR

META

Iniciar o conhecimento da dinâmica atmosférica, que produz fluxos de energia horizontal, na constituição do clima.

OBJETIVOS

Ao estudar esta lição, o(a) deverá: compreender a dinâmica da atmosfera, a partir da análise sistemática de seus elementos; deverá explicar as forças e os mecanismos que impulsionam os deslocamentos do ar; explicar as condições e os produtos da estabilidade e da instabilidade do ar; e fazer leituras da circulação do ar, em cartas sinópticas.

PRÉ-REQUISITOS

Ter assimilado o conteúdo da aula 08 "pressão atmosférica".

(Fonte: http://sobreventos.files.wordpress.com).

aro aluno, ou querida aluna: a atmosfera está sempre em movimento, resultado da soma de dois componentes: o movimento em relação à superfície da terra e o movimento em conjunto com a Terra, ao girar em torno de seu eixo. O primeiro movimen-

INTRODUÇÃO

to ocorre em duas dimensões: horizontal (ventos); e vertical (correntes aéreas); ambas em diferentes escalas temporais e espaciais. O segundo movimento exerce importantes efeitos

sobre a direção dos ventos em relação à Terra. A causa básica e fundamental do movimento atmosférico, horizontal ou vertical, é o desequilíbrio na radiação líquida entre as baixas e as altas latitudes, e entre a superfície da terra e a atmosfera.

s diferenças de temperatura do ar atmosférico e a conseqüente formação de zonas de pressões desiguais ocasionam os deslocamentos do ar, formando-se os ventos. Em áreas planas, o deslocamento é predominantemente horizontal, mas, em áreas

movimentadas, o deslocamento obedece à orientação do relevo, seguindo o caminho mais curto.

9 aula

MECANISMOS E FORÇAS

As zonas mais frias, onde dominam as altas pressões, são centros dispersores ou divergentes de ventos, nas quais o ar apresenta-se calmo e seco. Nas zonas mais quentes, de baixas pressões, formam-se as áreas ciclonais, convergentes dos ventos, nas quais o ar está sempre em movimento.

O deslocamento do ar na posição vertical é denominado de corrente aérea, conhecida na aeronáutica como térmicas. Os anticiclones são áreas descendentes, enquanto as depressões são áreas de ascendência.

O vento diverge dos centros de alta pressão, com a temperatura baixa, e converge para a depressão. Aí se torna mais leve (dilatação das moléculas) e ascende. No alto, as temperaturas são mais baixas, o ar se resfria e desce para os anticiclones, tentando chegar a um equilíbrio das pressões na atmosfera. Apesar dos deslocamentos constantes, as pressões não se igualam porque o mecanismo da radiação não permite, aquecendo mais algumas partes que outras.

A velocidade do vento é muito variável e depende diretamente das diferenças de pressão e da densidade do ar (Força do Gradiente de Pressão ou Força Motriz). Outras forças também influenciam o deslocamento do ar, tais como a Força de Gravidade, a Força Centrífuga, a Força de Coriolis e a Força de Atrito.

A força do gradiente de pressão ou força motriz depende diretamente das diferenças de pressão e da densidade do ar, e funciona como a força motivadora para o ar se movimentar de áreas de alta pressão para áreas de menor pressão. Quanto mais denso for o ar, menor a velocidade do vento. O ar mais rarefeito, em altitude, atinge mais velocidade. Por esta força, o vento é obrigado a fluir no

sentido das pressões mais baixas, e, quanto maior for o gradiente, mais intensa é a força.

Força de Gravidade é a força que se traduz pela atração em direção ao centro da Terra, que a exerce sobre todos os corpos colocados na sua superfície e a qualquer altura, imprimindo-lhes a propriedade de serem pesados.

A Força Centrífuga atua para fora do centro do círculo de movimento de um corpo, numa trajetória curva, de acordo com a primeira Lei de Newton.

Quando o fluxo de ar se desloca a grandes distâncias sobre o globo, sua trajetória não é perpendicular às isóbaras e sofre um desvio aparente. A força responsável por esse desvio na trajetória do vento é denominada de Força de Coriolis ou defletora, que ocorre devido à rotação da Terra, como resultado das Forças de Gravidade e Centrífuga.

A Terra executa uma rotação completa a cada 24 horas e, portanto, todos os corpos situados sobre ela efetuam um giro completo no mesmo tempo, ou seja, a velocidade angular é idêntica para todos os pontos em qualquer lugar em que se encontrem. O mesmo não acontece com a velocidade linear, pois esta decresce com o aumento da latitude. Por conseguinte, a Força de Coriolis é máxima nos pólos e nula no equador. A Força de Coriolis sempre atua em ângulos retos com a direção do movimento do ar, para a direita, no hemisfério norte, e para a esquerda, no hemisfério Sul.

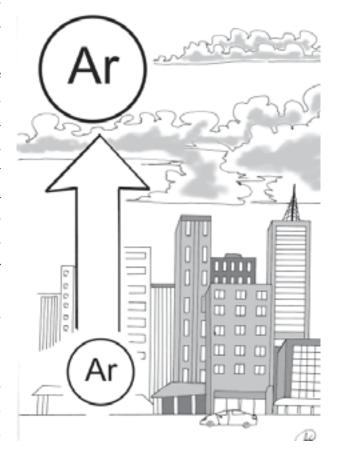
Sendo a Força de Coriolis praticamente nula nas latitudes equatoriais e tropicais, para compensar, os ventos sopram mais velozes aumentando o efeito da Força Centrífuga e equilibrando a Força do Gradiente de Pressão.

Se um corpo, durante o movimento, segue uma trajetória curva, deve haver uma aceleração em direção ao centro de rotação. A grandeza da aceleração centrípeta é pequena, de modo que ela somente se torna importante onde os ventos, em alta velocidade, movem-se em trajetórias muito curvas. Esta aceleração centrípeta pode ser também considerada como uma força centrífuga de sentido oposto, que opera radialmente para fora.

9 aula

A Força de Atrito ou de fricção, teoricamente, pode reduzir o efeito da Força de Coriolis. Próximo ao solo, o efeito de turbilhonamento do ar devido ao atrito com a superfície altera tanto a direção como a velocidade do vento. O atrito depende da forma e da rugosidade do solo e diminui com a altura. Para a Meteorologia, é a resistência que uma superfície exerce ao movimento do ar que desliza sobre ela.

EQUILÍBRIO ATMOSFÉRICO: ESTABILIDADE E INSTABILIDADE


Quando um volume de ar, por qualquer razão, é deslocado verticalmente ele se expande em virtude de encontrar pressão mais baixa (descompressão) e de não haver nenhuma troca de calor com

o ar circundante. Este processo envolve trabalho e consumo de energia, caindo a temperatura.

Esse processo é denominado de adiabático, porque a variação térmica não envolve ganho ou perda de energia para o ambiente. A proporção na qual a temperatura diminui num volume de ar em ascensão e expansão é conhecida como razão adiabática. A razão adiabática seca é a queda da temperatura de aproximadamente 9,8° C por quilômetro.

A razão adiabática úmida ou saturada tem um ritmo mais lento, cerca de 5°C por 1.000m.

As contínuas quedas na temperatura levarão à condensação, quando a temperatura do ponto de orvalho do

volume do ar for atingida. O calor latente será liberado pelo processo de condensação e este diminuirá o índice de queda de temperatura no volume do ar em ascensão.

Um volume ou uma massa quando submetido a algum impulso perturbador de ar, é considerado:

Estável – quando retorna à sua posição original;

Neutro – quando permanece em sua posição perturbada;

Instável – quando se afasta de sua posição original ao desaparecer o impulso de perturbação.

Se o ar é forçado a elevar-se, sendo mais frio e mais denso do que o ar circundante, tenderá a retornar ao seu nível original.

Quando o ar é mais quente do que o ar circundante, com uma razão adiabática maior, será instável, e sua tendência é continuar se movendo a partir de sua posição original, uma vez iniciado o movimento.

Há dois outros tipos de condição de instabilidade: instabilidade condicional e instabilidade potencial ou convectiva.

Um volume de ar pode ser estável, e, quando é forçado a elevar-se, pelo aquecimento convectivo ou pela barreira orográfica, torna-se mais quente do que o ar circundante e se eleva livremente. É a *instabilidade condicional*, pois depende da umidade relativa do ar.

Se um volume de ar torna-se condicionalmente instável depois da elevação, considera-se que o mesmo esteve no estado de instabilidade convectiva ou potencial.

Um volume de ar é considerado *neutro* se, quando forçado para cima ou para baixo, tem a tendência de permanecer em sua posição perturbada, no momento em que desaparecer a força motivadora.

REPRESENTAÇÃO GRÁFICA

A representação da direção e velocidade do vento é realizada mediante símbolos formados por flechas indicativas da procedência. Nelas se aliam barbas ou rebarbas referentes a 5 nós (meia rebarba), a 10 nós (uma rebarba inteira) até os 45 nós.

Quando a velocidade alcança 50 nós, o símbolo é um triângulo ou flâmula. Recorde-se que um nó é equivalente a uma milha marítima, ou seja, 1.852 m/h.

A rosa dos ventos é a forma mais corrente de representar a direção, pelos pontos cardeais, colaterais e sub-colaterais. A direção é sempre representada e mencionada pela origem dos movimentos.

A escala da força do vento de Beaufort permite que a velocidade do vento seja calculada sem auxílio instrumental, pela observação dos efeitos sobre objetos comuns. Foi imaginada, no século XIX, por um marinheiro inglês, *Almirante Sir Francis Beaufort*.

Quadro - Representação da força do vento pela Escala de Beaufort.

FORÇA	sімвоLo	DESCRIÇÃO	EFEITOS
0	0	CALMARIA	Vento calmo. A fumaça eleva-se verticalmente.
1		ARAGEM	A direção do vento é mostrada pela inclinação da fumaça.
2	\	BRISA LIGEIRA	O vento é sentido no rosto. As folhas das árvores se agitam.
3	/	BRISA SUAVE	Folhas e galhos pequenos se movem constantemente.
4		VENTO MODERADO	O vento levanta poeira e papéis soltos. Alguns galhos maiores se movimentam.
5		VENTO FRACO	Árvores pequenas são sacudidas. Nas águas se formam pequenas ondas.
6		VENTO FORTE	Ramos ou galhos maiores se movimentam. Os guarda-chuvas são abertos com dificuldades. Próximo aos fos de telégrafos ouvem-se assobios.
7	\rightarrow	TEMPESTADE MODERADA	Árvores grandes são sacudidas. Há dificuídades em se caminhar contra o vento.
8		TEMPESTADE	Os ramos das árvores são quebrados. Pode impedir de se caminhar na rua.
9	11111	TEMPESTADE FORTE	Verificam-se leves danos estruturais. Alguns telhados podem ser arrancados.
10	_	TEMPESTADE TOTAL	Árvores são arrancadas. Consideráveis danos estruturais.
11/12		VENDAVAL	Ocomem grandes danos.

atmosfera tem um comportamento dinâmico e complexo, buscando equilibrar seu estado físico e atuando de forma diferenciada nos espaços geográficos, resultado de cau-

CONCLUSÃO

sas também variáveis. Pode apresentar estágios diferentes de equilíbrio ou ser perturbada em suas relações com a superfície.

RESUMO

A dinâmica da atmosfera é resultado de movimentos em relação à superfície da terra e em conjunto. Ela se movimenta tanto no sentido horizontal quanto no vertical. O que causa o movimento atmosférico horizontal ou vertical é o desequilíbrio na radiação líquida entre as baixas e as altas latitudes e entre a superfície da terra e a atmosfera. A velocidade do vento é muito variável e depende diretamente das diferenças de pressão e da densidade do ar (Força do Gradiente de Pressão ou Força Motriz). Outras forças também influenciam o deslocamento do ar, tais como a Força de Gravidade, a Força Centrífuga, a Força de Coriolis e a Força de Atrito. Um volume ou uma massa de ar é considerado; estável, neutro, ou instável se, quando submetido a algum impulso perturbador, respectivamente, retorna a sua posição original, permanece em sua posição perturbada ou se afasta de sua posição original quando desaparecer o impulso de perturbação.

ATIVIDADES

9 aula

Assinale as alternativas corretas, tendo como base o conhecimento da pressão atmosférica como elemento impulsionador da dinâmica e do equilíbrio da atmosfera:

1. A pressão do ar é exercida:	
a) () de cima para baixo	b) () somente na vertical
c) () em todos os sentidos	d) () somente na horizontal
2. A pressão atmosférica:	
a) () independe da altitude	b) () diminui com a altitude
c) () aumenta com a altitude	d) () só varia com a altitude
3. A pressão atmosférica varia:	
a) () com a temperatura	b) () de um lugar para outro
c) () com o período do dia	d) () todas as alternativas
	estão corretas
4. A pressão atmosférica decresce	na vertical, por efeito da força de:
a) () atrito b) () gravidade	c) () Coriolis d) () centrífuga
5. Um centro de baixa pressão aj	presenta:
a) () pressões mais elevadas ao	centro
b) () pressões baixas em todos o	os sentidos
c) () pressões diminuindo para a	a periferia
d) () pressões aumentando para	a periferia
6. Ao nível do mar a pressão é do	e 1.013 mb. A 45 metros de altitu
de, deverá ser aproximadamente	:
a) () 1000 mb	
b) () 1008 mb	
c) () 1010 mb	
d) () 1012 mb	

 7. Colo é: a) () o prolongamento de um centro de alta pressão em forma de U b) () o prolongamento de um centro de baixa pressão em forma de U c) () uma área indefinida entre um ou dois centros de pressões diferentes d) () o mesmo que dorsal e talvegue 				
8. Talvegue é reconhecido como: a) () o prolongamento de um centro de alta pressão em forma de U b) () o prolongamento de um centro de baixa pressão em forma de U c) () uma área indefinida entre um ou dois centros de pressões diferentes d) () o mesmo que dorsal e crista				
9. Os ventos barostróficos e as correntes aéreas são sistemas de circulação: a) () primária				
10. O anticiclone e a corrente aérea: a) () convergente b) () divergente c) () ascendente d) () subsidente				
11. A depressão e o vento: a) () convergente b) () divergente c) () ascendente d) () subsidente				
 12. A força do gradiente de pressão: a) () é responsável pelo desvio aparente do vento b) () depende das diferenças de pressão e densidade do ar c) () ocorre devido a rotação da terra d) () se deve aos obstáculos da superfície da terra 				
13. A Força de Coriolis provoca um desvio aparente dos ventos, devido a(ao): a) () gravidade terrestre				

14. A Força de Coriolis decresce:					
a) () com a estação do ano b) () do equador para os pólos					
c) () dos pólos para o equador d) () com o aumento da longitude					
15. Os aparelhos que medem a pressão e a velocidade do vento					
são, respectivamente:					
a) () psicrômetro e anemômetro b) () barômetro e psicrômetro					
c) () barômetro e anemoscópio d) () barômetro e anemômetro					
e) () barometro e anemoscopio a) () barometro e anemometro					
16. A representação gráfica da pressão atmosférica:					
a) () isotermas b) () isótacas c) () isógonas d) () isóbaras					
17. As linhas de igual intensidade do vento são representadas:					
a) () isoietas b) () isótacas c) () isógonas d) () isóbaras					
18. Linhas que num mapa unem os pontos com a mesma direção					
do vento:					
a) () isóbaras b) () isótacas c) () isógonas d0 () nós					
19. Se o gradiente numa massa de ar for de 0,5°C para cada 100					
metros, será igual ao:					
a) () gradiente adiabático úmido					
c) () gradiente termométrico vertical d) () gradiente barométrico					
20. Admitindo-se que a ascensão de uma parcela de ar continental					
se encontra na superfície a uma temperatura de 28°, sua razão					
adiabática, a 2000m, se dará na ordem de:					
a) () 23°C b) () 18°C c) () 22°C d) () 8°C					
21. No ar instável:					
a) () não há formação de nuvens					
b) () o ar tende a se afastar cada vez mais					
c) () não há movimentação vertical do ar					
d) () só se formam nuvens na origem					

- 22. No equilíbrio estável, um corpo afastado de sua posição de origem, por uma força qualquer:
- a) () permanecerá na nova posição
- b) () voltará à posição de origem
- c) () voltará à posição de origem, afastando-se logo depois
- d) () tenderá a se afastar cada vez mais

REFERÊNCIAS

AYOADE, J. O. **Introdução à climatologia para os trópicos**. São Paulo: DIFEL, 1986.

ESTIENNE, Pierre et GODARD, Alain. **Climatologie**. Paris: Librairie Armand Colin, 1970.

FORSDYKE, A. C. **Previsão do tempo e clima**. Tradução: FER-RO, Fernando de Castro. São Paulo: EDUSP / Edições Melhoramentos, 1975.

PINTO, Josefa Eliane Santana de S.; AGUIAR NETTO, Antenor Oliveira de. Climatologia, Geografia e Agrometeorologia: uma abordagem interdisciplinar. São Cristóvão: Editora da UFS (prelo).

SANT'ANNA NETO, João Lima; ZAVATINI, João Afonso (Orgs.).

Variabilidade e mudanças climáticas: implicações ambientais e socioeconômicas. Maringá: EDUEM, 2000.