Aula 09

OS TEOREMAS DE SYLOW

META

Estabelecer os teoremas de Sylow.

OBJETIVOS

Identificar p - SS.

Aplicar os teoremas de Sylow na resolução de problemas.

PRÉ-REQUISITOS

O curso de Fundamentos de Matemática e as aulas anteriores.

INTRODUÇÃO

Esta é a última aula deste curso sobre a Teoria dos grupos. Vamos estabelecer os teoremas de Sylow que, após os teoremas de Lagrange e Cauchy, constituem os primeiros resultados importantes decorrentes das propriedades aritméticas das ordens dos grupos finitos.

Nesta aula, iniciaremos estabelecendo o conceito de ação de grupos sobre conjuntos de modo sucinto, definindo e apresentando apenas os propriedades que utilizaremos nas demonstrações dos três teoremas de Sylow que são os resultados importantes desta aula.

AÇÃO DE GRUPOS EM CONJUNTOS

Definição 1. Sejam G um grupo e X um conjunto não vazio. Chamamos ação de G em X a qualquer aplicação de G $xX \to X$, que escrevemos, $G \times G \to \alpha \times X$, satisfazendo às seguintes propriedades:

i)
$$\forall x \in X, e * x = x$$

ii)
$$\forall a, b \in G, a * (b * x) = (ab) * x$$

Exemplo 1. Seja G um grupo para X = G, a aplicação de $G \times G \to G$ dada por $a \times x = ax$ é uma ação de G em si próprio.

Exemplo 2. Sejam $H \subseteq G$ $e X = \frac{G}{H}$.

Então, a aplicação G x = H dada por a * bH = abH é uma ação no conjunto quociente G/H.

Observação. Quando o grupo G age no conjunto X, para cada $a \in G$. Define-se uma transformação $T_a: X \to X$ onde $T_a(x) = a * x$.

É fácil ver que cada T_a é bijetiva onde $(T_a)^{-1}: X \to X$ é dada por $(T_a)^{-1}(y) = a^{-1} * y$.

A ação de um grupo G nem conjunto X, define uma relação de equivalência neste, assim definida: $xRy \Leftrightarrow \exists a \in G \text{ tal que } y = a * x.$

Notemos que $x = e * x \ \forall x \in X$, se em X, xRy então existe $a \in G$ tal que y = a * x donde temos que $x = a^{-1} * y$ e, yRx. Se $x, y, z \in X$ tais que xRy e yRz então existem $a, b \in G$ tais que y = a * x e z = b * y, donde temos que $z = b * (a * x) = (ba) * x \ logo, \ aRz$.

Dados G grupo e X conjunto com G agindo em X, definimos a G-órbita do elemento $x \in X$, como sendo a classe de equivalência de x e a indicamos por $\mathcal{O}(x)$

Precisamente, $\mathcal{O}(x) = \{a * x; a \in G\}$. Indicamos o conjunto quociente (das órbitas) por $X/_{G}$.

Quando X é finito, lembremos que existem $x_1, x_2, ..., x_n \in X$ tais que $X = \bigcup \mathcal{O}(x_i)$ e $|G| = \sum_{i=1}^n |\mathcal{O}(x_i)|$.

Definição 2. Dados G grupo, X conjunto com G agindo em X e, $x \in X$, definimos o estabilizador (ou subgrupo de isotropia) de x, como sendo o conjunto

$$G_x = \{a \in G; a * x = x\}.$$

Notemos que $e * x = x \Rightarrow e \in G_x$. Se $a,b \in G_x$ então a * x = x e $b * x = x \Rightarrow b^{-1} * x = x$ e $(ab^{-1}) * x = a * (b^{-1} * x) = a * x = x \Rightarrow ab^{-1} \in G_x$. Portanto, para cada $x \in X$, o estabilizador de x é um subgrupo de G, como já informamos na definição, chamado também de subgrupo de isotropia do elemento x de X.

Notemos também que se $x,y \in X$ estão na mesma órbita, isto é, $\mathcal{O}_x = \mathcal{O}_y$ então, seus estabilizadores são conjugados, pois se y = a * x, para algum $a \in G$, temos:

$$b \in G_x \Leftrightarrow b * x = x \Leftrightarrow b * (a^{-1} * y) = a^{-1} * y \Leftrightarrow (ba^{-1}) * y = a^{-1} * y \Leftrightarrow a *$$

 $((ba^{-1}) * y) = y \Leftrightarrow (aba^{-1}) * y = y \Leftrightarrow aba^{-1} \in G_y \Leftrightarrow G_y = a^{-1}G_xa = G_x^a$. Portanto, $G_x \in G_y$ são conjugados.

Proposição 1. Sejam G um grupo e X um conjunto com G agindo em X então, para cada $x \in X$, $|\mathcal{O}_x| = [G : G_x]$.

Demonstração. Consideramos para cada $x \in X$, a aplicação $\psi : \mathcal{O}_x \to {}^G/_{G_X}$ dada por $\psi(a) = aG_x$. Então, para $a, b \in \mathcal{O}_x$, $\psi(a) = \psi(b) \Leftrightarrow aG_x = bG_x \Leftrightarrow b^{-1}a \in G_x \Leftrightarrow (b^{-1}a) * x = x \Leftrightarrow a * x = b * x$. Logo, ψ é injetiva. Como estamos lidando com conjuntos finitos, temos a bijetividade. Portanto, $|\mathcal{O}_x| = [G : G_x]$. (ou $|G| = |\mathcal{O}_x|$. $|G_x|$).

Observação. Para
$$\frac{G}{X} = \{\mathcal{O}_{x_1}, \dots, \mathcal{O}_{x_n}\}$$
, temos $|X| = \sum_{i=1}^n \left|\mathcal{O}_{x_i}\right| = \sum_{i=1}^n [G:G_{x_i}]$

OS TEOREMAS DE SYLOW

Proposição 1. (1º teorema de Sylow). Sejam G um grupo finito e $p \in \mathbb{Z}_+$ um primo onde $|G| = p^n.m$, onde $m, n \in \mathbb{N}$. Então G possui um subgrupo H de G de ordem p^n .

Demonstração. Seja $X = \{S | S \subseteq G \ e \ |G| = p^n\}$ o conjunto de todos os subconjuntos de G com p^n elementos.

Façamos G agir em X do seguinte modo: $\forall a \in G \ e \ \forall S \in X, \ a * S = aS = \{as; s \in S\}.$

Notemos que $|aS| = |S| \implies aS \in X$.

$$|X| = \binom{p^n m}{p_n} = \frac{(p^n m)!}{p^n!(p^n m - p^n)!} = \frac{p^n m(p^n m - 1)....(p^n m - p^n + 1)}{p^n(p^n - 1).....2.1}$$

Notemos que para $0 \le k \le n$ e $1 \le i \le p^n$, $p^k | p^n m - i \Leftrightarrow p^k | i \Leftrightarrow p^k | p^n - i$. Logo, $p^r | |X| \Leftrightarrow p^r | m$.

Seja p^r a potência de p de maior expoente na fatoração em primos de |X| (ou de m). Como $|X| = \sum_{S \in X} |\mathcal{O}_S|$, $p^r |X| = p^{r+1} |X|$, existe pelo menos uma destas órbitas, digamos $\{S_1, S_2, ..., S_k\}$ tal que $p^{r+1} |k|$.

Seja S_i um elemento desta órbita, então $|G| = |O_{S_i}| \cdot |G_{S_i}| \Rightarrow p^n m = k \cdot |G_{S_i}|$

Como $p^r|m$ e $p^{r+1} \nmid m$ temos que $p^{n+r}|k.|G_{S_i}|$. Lembrando que $p^{r+1} \nmid k \Rightarrow p^n||G_{S_i}| \Rightarrow |G_{S_i}| \geq p^n$.

Finalmente, como $G_{S_i} = \{a \in G; aS_i = S_i\}$ temos que $\forall s \in S_i, G_{S_i}s \subseteq S_i$, além disto, $|G_{S_i}s| = |G_{S_i}|$, $|G_{S_i}s| = |G_{S_i}|$, $|G_{S_i}s| = |G_{S_i}s|$ além disto, $|G_{S_i}s| = |G_{S_i}s|$

As duas designaldades acima implicam que $|G_{s_i}| = p^n$ e portanto, existe $H = G_{s_i} \le G$ tal que $|H| = p^n$.

Observação: O teorema de Cauchy é um caso especial deste teorema.

Sejam, G um grupo finito, $p \in \mathbb{N}$ um primo $e H \leq G$.

Definição 1. Dizemos que H é um p-subgrupo de Sylow de G se |H| é a potência de p, de maior expoente, que divide a ordem de G.

Ou seja H é um p - SS se $|G| = p^n . m$ com $m, n \in \mathbb{N}$ e $p \nmid m$.

Proposição 2. (2º teorema de Sylow). Sejam G um grupo finito $e p \in \mathbb{N}$ um primo divisor da ordem de G. Então, todos os p - SS são conjugados. Ou seja, se $H, L \leq G$ são p-subgrupos de Sylow, então existe $a \in G$ tal que $L = a^{-1}Ha$.

Demonstração. Seja H um p-SS de G. Então $|G|=p^n m$ com $m,n \in \mathbb{N}, p \nmid m$ e $|H|=p^n$. Temos então que [G:H]=m.

Seja $X = \{aH; a \in G\}, (\Longrightarrow |X| = m)$ e seja K um outro p - SS de G. Façamos K agir em X pela regra g * aH = gaH.

Como $|X| = m = \sum_{aH \in X} |\mathcal{O}_{aH}|$ e $p \nmid m$, existe uma órbita \mathcal{O}_{a_1H} com k elementos tal que $p \nmid k$. Seja a_1H um elemento desta órbita. Então, o estabilizador deste elemento é $K_{a_1H} = \{a \in K; aa_1H = a_1H\} = \{a \in K; a_1^{-1}a \ a_1.H = H\} = \{a \in K; a_1^{-1}aa_1 \in H\} = \{a \in K; a \in a_1Ha_1^{-1}\}.$

Ou seja $K_{a_1H} = H \cap a_1Ha_1^{-1}$.

Como $|K| = |K_{a_1H}| \cdot |\mathcal{O}_{a_1H}|$ temos que $p^n = |K \cap a_1Ha_1^{-1}| \cdot k$. Como $p \nmid k$ segue que k = 1 e $|K \cap a_1H| = p^n$. Consequentemente $K \cap a_1Ha_1^{-1} = K = a_1Ha_1^{-1}$ e portanto, H e K são conjugados.

Proposição 3. (3º teorema de Sylow). Sejam G um grupo finito e $p \in \mathbb{N}$ um primo divisor da ordem de G. Então, o número de p - SS de G é um divisor do índice comum destes subgrupos e, é congruente a 1 módulo p.

Demonstração. Sejam $|G| = p^n.m$ com $m.n \in \mathbb{N}$ e $p \nmid m$. Seja r_p o número de p-SS de G. Devemos mostrar que $r_p|m$ e que $r_p \equiv 1 \pmod{p}$. Com efeito, sejam H um p-SS de G, $X = \frac{G}{H} = \{aH; a \in G\}$ e a ação de G em X definida por g*aH = gaH. Notemos que dados $aH, bH \in X$, existe $ba^{-1} \in G$ tal que $bH = ba^{-1}*aH$ donde temos que $\mathcal{O}_{aH} = \mathcal{O}_{bH}$, ou seja, para esta ação temos apenas uma órbita (\Rightarrow Todos os grupos de isotropia dos elementos de X são conjugados (\Rightarrow têm a mesma ordem)).

Seja aH um elemento pré-fixado de X. Então $G_{aH} = \{g \in G; gaH = aH\} = \{g \in G; a^{-1}gaH = H\} = \{g \in G; g \in aHa^{-1}\} = aHa^{-1}$. Ou seja, o estabilizador de aH é o p – SS aHa^{-1} .

Sejam $a_1H,...,a_rH$ os elementos de X que tem H como estabilizador. Então, para $i \in \{1,...,r\}, ha_iH = a_iH \ \forall h \in H \Leftrightarrow a_i^{-1}ha_iH = H \ \forall h \in H \Leftrightarrow a_i^{-1}ha_i \in H, \forall h \in H \Leftrightarrow Ha_i = a_iH.$

Agora notemos que para cada $i \in \{1, ..., r\}$, e para cada $h \in H$, aha^{-1} . $aa_iH = aha_iH = ahHa_i = aHa_i = aa_iH$. Segue que os elementos aa_iH , ..., aa_rH são estabilizados pelo p - SS $aHa^{-1} = \{aha^{-1}; h \in H\}$.

Sejam $a_iH,...,a_sH$ os elementos de X que são estabilizados por aHa^{-1} . Então, para cada $j \in \{1,...,s\}$ e cada $h \in H$, temos $aha^{-1}.a_jH = a_jH \Rightarrow h.a^{-1}a.H = a^{-1}a_jH$ segue que $a^{-1}a_jH$ é estabilizado por H. Temos então que $r \le s$ e $s \le r$ ou seja r = s.

Logo, cada p – SS de G estabiliza o mesmo número de elementos de X.

Como $|X| = m + r \cdot r_p$ temos que $r_p | m$ como queríamos.

Agora, façamos o p-SS H de G agir em $X=\{aH;a\in G\}$ pela ação h*aH=haH (mesma lei de definição de antes). Sabemos que para cada $aH\in X$, $|\mathcal{O}_{aH}||p^n$ donde segue que o número de elementos de cada órbita é 1 ou uma potência de p. Se $|\mathcal{O}_{aH}|=1$ então $\mathcal{O}_{aH}=\{aH\}\Leftrightarrow\{haH;h\in H\}=\{aH\}\Leftrightarrow haH=ah\ \forall h\in H\Leftrightarrow G_{aH}=H$. Isto implica que existem r órbitas, sob a ação de H com um único elemento. Como as ordens não unitárias são múltiplos de p, existe $u\in\mathbb{N}$ tal que |X|=m=r+u.p ou seja, $m\equiv r(mod\ p)$ como, $m=r.r_p$, temos $r.r_p\equiv r(mod\ p)\Rightarrow p|r(r_p-1)$ e como $p\nmid m\ (\Rightarrow p\nmid r)$ ou seja $p|r_p-1$ e portanto $r_p\equiv 1(mod\ p)$. Como queríamos demonstrar.

Exemplo 1. Seja G, um grupo de ordem 15. Vamos provar que G tem um subgrupo normal. De fato, seja n_5 o número de subgrupos de G de ordem 5. Pelo 3° teorema de Sylow, temos que $n_5 \equiv 1 \pmod{5}$ e $n_5 \mid 3$. Segue que $n_5 = 1$. Como existe um único 5-subgrupo de Sylow, pelo 2° teorema de Sylow este subgrupo é normal.

RESUMO

Estabelecemos inicialmente a ação de um grupo num conjunto, apresentado suas propriedades onde preparamos os pré-requisitos para as demonstrações dos teoremas de Sylow. Apresentamos os teoremas, definimos os p - SS, demonstramos os teoremas e terminamos com um exemplo no qual aplicamos o 3° e 2° teoremas de Sylow.

ATIVIDADES

- 1. Seja G um grupo de ordem 24. Prove que G tem um subgrupo H tal que |H| = 4.
- 2. Seja G um grupo de ordem pq onde p e q são primos positivos tais que p < q. Prove que G tem um subgrupo H normal de ordem q.
- 3. Se G é simples e abeliano, prove que |G| é um número primo.
- 4. Suponhamos que G é um grupo simples cuja ordem é p^n . m onde $m, n \in \{2,3,...\}$ e $p \in \mathbb{Z}_+$ é primo e $p \nmid m$. Prove que G tem no mínimo dois p SS.

COMENTÁRIO DAS ATIVIDADES

Caro aluno, você deve ter notado que para fazer a primeira atividade basta aplicar diretamente o primeiro teorema de Sylow.

Na segunda, você deve ter imitado o exemplo 3.

A terceira atividade, se você conseguiu fazê-la, você deve ter usado o fato de que todo subgrupo de um grupo abeliano é normal.

Na quarta atividade, usando o 2° teorema de Sylow, se G tivesse apenas um p-SS, este seria normal.

REFERÊNCIAS

GONÇALVES, Adilson. Introdução à álgebra. 5. ed. Rio de Janeiro: IMPA, 2007. 194 p. (Projeto Euclides) ISBN.

HUNGERFORD, Thomas W. Abstract algebra: an introduction. 2nd. ed. Austrália: Thomson Learning, ©1997.

GARCIA, Arnaldo; LEQUAIN, Yves. Elementos de álgebra. 3. ed. Rio de Janeiro: IMPA, 2005. 326 p. (Série: Projeto Euclides).