Estruturas Algébricas II

Kalasas Vasconcelos de Araujo

São Cristóvão/SE 2009

Estruturas Algébricas II

Elaboração de Conteúdo

Kalasas Vasconcelos de Araujo

Capa

Hermeson Alves de Menezes

Copyright © 2009, Universidade Federal de Sergipe / CESAD. Nenhuma parte deste material poderá ser reproduzida, transmitida e gravada por qualquer meio eletrônico, mecânico, por fotocópia e outros, sem a prévia autorização por escrito da UFS.

FICHA CATALOGRÁFICA PRODUZIDA PELA BIBLIOTECA CENTRAL UNIVERSIDADE FEDERAL DE SERGIPE

A663e Araujo, Kalasas Vasconcelos de.
Estruturas Algébricas II / Kalasas Vasconcelos de Araujo.
-- São Cristóvão: Universidade Federal de Sergipe,
CESAD, 2009.

1. Matemática. 2. Álgebra. I. Título.

CDU 512

Presidente da República

Luiz Inácio Lula da Silva

Ministro da Educação

Fernando Haddad

Secretário de Educação a Distância

Carlos Eduardo Bielschowsky

Reitor

Josué Modesto dos Passos Subrinho

Vice-Reitor

Angelo Roberto Antoniolli

Núcleo de Avaliação

Guilhermina Ramos (Coordenadora) Carlos Alberto Vasconcelos

Chefe de Gabinete

Ednalva Freire Caetano

Coordenador Geral da UAB/UFS

Diretor do CESAD Antônio Ponciano Bezerra

Vice-coordenador da UAB/UFS Vice-diretor do CESAD Fábio Alves dos Santos

Elizabete Santos

Giselda Barros

Marialves Silva de Souza

Diretoria Administrativa e Financeira

Edélzio Alves Costa Júnior (Diretor) Sylvia Helena de Almeida Soares

Valter Siqueira Alves

Diretoria Pedagógica

Clotildes Farias (Diretora)

Janaina de Oliveira Freitas

Hérica dos Santos Mota

Daniela Souza Santos

Iara Macedo Reis

Núcleo de Tecnologia da Informação

João Eduardo Batista de Deus Anselmo Marcel da Conceição Souza

Núcleo de Servicos Gráficos e Audiovisuais

Coordenação de Cursos

Djalma Andrade (Coordenadora)

Assessoria de Comunicação

Guilherme Borba Gouy

Núcleo de Formação Continuada

Rosemeire Marcedo Costa (Coordenadora)

Coordenadores de Curso

Denis Menezes (Letras Português) Eduardo Farias (Administração)

Haroldo Dorea (Química)

Hassan Sherafat (Matemática)

Hélio Mario Araújo (Geografia)

Lourival Santana (História)

Marcelo Macedo (Física)

Silmara Pantaleão (Ciências Biológicas)

Coordenadores de Tutoria

Edvan dos Santos Sousa (Física)

Geraldo Ferreira Souza Júnior (Matemática) Janaína Couvo T. M. de Aguiar (Administração)

Priscilla da Silva Góes (História)

Rafael de Jesus Santana (Química)

Ronilse Pereira de Aquino Torres (Geografia)

Trícia C. P. de Sant'ana (Ciências Biológicas)

Vanessa Santos Góes (Letras Português)

NÚCLEO DE MATERIAL DIDÁTICO

Hermeson Menezes (Coordenador)

Edvar Freire Caetano Isabela Pinheiro Ewerton Lucas Barros Oliveira Neverton Correia da Silva Nycolas Menezes Melo Tadeu Santana Tartum

UNIVERSIDADE FEDERAL DE SERGIPE

Cidade Universitária Prof. "José Aloísio de Campos" Av. Marechal Rondon, s/n - Jardim Rosa Elze CEP 49100-000 - São Cristóvão - SE Fone(79) 2105 - 6600 - Fax(79) 2105- 6474

<u>Sumário</u>

Aula 1	: Polinômios	15
1.1	Introdução	16
1.2	Polinômios	17
1.3	A estrutura algébrica dos polinômios e o significado	
	da expressão $a_n x^n + \dots a_1 x + a_0 \dots \dots$	18
1.4	Termos e Monômios	24
1.5	Conclusão	25
RES	SUMO	26
PR	ÓXIMA AULA	28
\mathbf{AT}	IVIDADES	29
LEI	TURA COMPLEMENTAR	31
Aula 2	\mathbf{z} : Algoritmo da divisão em $k[x]$	33
2.1	Introdução	34
2.2	O Algoritmo da divisão em $k[x]$	34
2.3	O teorema do resto e do fator	37
2.4	Conclusão	39
RES	SUMO	39
PR	ÓXIMA AULA	40
\mathbf{AT}	IVIDADES	40
LEI	TURA COMPLEMENTAR	41

Αı	ıla 3	: Teoria da divisibilidade Em $k[x]$	43
	3.1	Introdução	44
	3.2	Glossário	45
	3.3	Ideais em $k[x]$	47
	3.4	MDC em $k[x]$	48
	3.5	$MDC \not\Rightarrow DIP \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	52
	3.6	Irredutíveis e Fatoração única em $k[x]$	53
	3.7	Irredutibilidade versus raízes de funções polinomiais	55
	3.8	Conclusão	55
	RES	SUMO	56
	PRO	ÓXIMA AULA	58
	ATI	VIDADES	58
	LEI	TURA COMPLEMENTAR	59
	1 4		01
Αι		: Irredutibilidade em $\mathbb{Q}[x]$	61
	4.1	Introdução	62
	4.2	Teste da raiz racional	62
	4.3	O conteúdo de um polinômio	63
	4.4	Lema de Gauss	65
	4.5	Irredutibilidade em $\mathbb{Q}[x]\Leftrightarrow$ irredutibilidade em $\mathbb{Z}[x]$.	66
	4.6	Conclusão	67
		SUMO	67
	PRO	ÓXIMA AULA	68
	ATI	VIDADES	68
	LEI	TURA COMPLEMENTAR	69
Αι	ıla 5	: Critérios de irredutibilidade	
	Em	$\mathbb{Z}[x]$	71
	5.1	Introdução	72
	5.2	Critério de Eisenstein	73
	5.3	Critério $\mathbb{Z}_p[x]$	74

	5.4	Critério $f(x+c)$	76
	5.5	O polinômio ciclotômico $\Phi_p(x)$, p primo	77
		·	
	5.6	Conclusão	78
		SUMO	79
	PRO	ÓXIMA AULA	79
	ATI	VIDADES	80
	LEI	TURA COMPLEMENTAR	81
Αı	ıla 6	: Anéis quocientes $k[x]/I$	83
	6.1	Introdução	84
	6.2	Exemplos	84
	6.3	O anel quociente $k[x]/I$	85
	6.4	A estrutura de $k[x]/(p(x))$ quando $p(x)$ é irredutível .	89
	6.5	Adjunção de raízes	90
	6.6	Conclusão	91
	RES	SUMO	92
	PRO	ÓXIMA AULA	92
	ATI	VIDADES	92
	LEI	TURA COMPLEMENTAR	95
Αι	ıla 7	: Extensões de Corpos	97
	7.1	Introdução	98
	7.2	Glossário	98
	7.3	Exemplos	101
	7.4	Fatos	107
	7.5	Exercícios Resolvidos	108
	7.6	Conclusão	116
	RES	SUMO	116
	PRO	ÓXIMA AULA	117
	ATI	VIDADES	117
	LEI	TURA COMPLEMENTAR	118

Aula 8	3: Extensão de um	
Ison	morfismo	119
8.1	Introdução	120
8.2	$m_{\alpha,F}(x) = m_{\beta,F}(x) \Rightarrow F(\alpha) \cong F(\beta) \dots \dots$	121
8.3	Extensão de isomorfismos para extensões simples .	122
8.4	Conclusão	125
\mathbf{RE}	SUMO	125
PR	ÓXIMA AULA	126
\mathbf{AT}	IVIDADES	126
LE	ITURA COMPLEMENTAR	127
Aula 9	9: Extensões algébricas	129
9.1	Introdução	130
9.2	Finita \Rightarrow algébrica	131
9.3	Finitamente gerada \Rightarrow algébrica ?	131
9.4	Finita ⇔ finitamente gerada e algébrica	132
9.5	Transitividade	133
9.6	O corpo dos elementos algébricos	133
9.7	Algébrica \Rightarrow Finita	134
9.8	Conclusão	135
\mathbf{RE}	SUMO	135
PR	ÓXIMA AULA	136
\mathbf{AT}	IVIDADES	136
LE	ITURA COMPLEMENTAR	137
Aula 1	0: Corpo de raízes	139
10.1	Introdução	140
10.2	P. Exemplos	140
10.3	B Existência	141
10.4	Unicidade	142

10.6 Conclusão	148
RESUMO	148
PRÓXIMA AULA	149
ATIVIDADES	149
LEITURA COMPLEMENTAR	150
Aula 11: Separabilidade	151
11.1 Introdução	152
11.2 Critério da derivada para separabilidade de polinômios	s 153
11.3 O teorema do elemento primitivo	153
11.4 Conclusão	155
RESUMO	155
PRÓXIMA AULA	156
ATIVIDADES	156
LEITURA COMPLEMENTAR	157
LETTORA COMI DEMENTAR	
	159
Aula 12: Noções elementares da	
Aula 12: Noções elementares da Teoria de Galois	159
Aula 12: Noções elementares da Teoria de Galois 12.1 Introdução	159 160
Aula 12: Noções elementares da Teoria de Galois 12.1 Introdução	159 160 160
Aula 12: Noções elementares da Teoria de Galois 12.1 Introdução	159 160 160 160
Aula 12: Noções elementares da Teoria de Galois 12.1 Introdução 12.2 O grupo de Galois 12.3 Fatos 12.4 Exemplos	159 160 160 160 161
Aula 12: Noções elementares da Teoria de Galois 12.1 Introdução	159 160 160 160 161
Aula 12: Noções elementares da Teoria de Galois 12.1 Introdução	159 160 160 160 161 167 170
Aula 12: Noções elementares da Teoria de Galois 12.1 Introdução 12.2 O grupo de Galois 12.3 Fatos 12.4 Exemplos 12.5 A correspondência de Galois 12.6 Conclusão RESUMO	159 160 160 161 167 170
Aula 12: Noções elementares da Teoria de Galois 12.1 Introdução	159 160 160 161 167 170 170
Aula 12: Noções elementares da Teoria de Galois 12.1 Introdução	159 160 160 161 167 170 170 171

13.1 Introdução	76
13.2 O Lema Principal	76
13.3 Sobrejetividade	77
13.4 Injetividade	78
13.5 O Teorema Fundamental	79
13.6 Conclusão	82
RESUMO	.83
PRÓXIMA AULA	84
ATIVIDADES	84
LEITURA COMPLEMENTAR	.85
Aula 14: Exemplos 1	87
-	.88
•	.88
	91
	93
	96
	96
PRÓXIMA AULA	98
ATIVIDADES	.98
LEITURA COMPLEMENTAR	99
	~ -
1	01
15.1 Introdução	
·	203
•	203
'	203
	204
	204
· ·	204
15.3.2 Exemplos	204

15.3.3 Fatos	204
15.4 O Critério de Solubilidade de Galois $$	205
15.5 Uma quíntica não solúvel por radicais $$	206
15.6 Conclusão	208
RESUMO	208
ATIVIDADES	209
LEITURA COMPLEMENTAR	210

1

Polinômios

META:

Apresentar polinômios em uma indeterminada sobre um anel.

OBJETIVOS:

Ao fim da aula os alunos deverão ser capazes de:

Definir polinômios em uma indeterminada sobre um anel.

Compatibilizar a estrutura do anel A com a de A[x].

Efetuar as operações de soma e produto de polinômios.

Reconhecer o grau de um polinômio.

Reconhecer coeficientes, termos, termo líder, coeficiente líder, monômio

líder e o termo constante de um polinômio.

PRÉ-REQUISITOS

Definição de anel, domínio de integridade e corpo.

1.1 Introdução

Prezado aluno, bem vindo ao curso estruturas algébricas II. Esta é nossa primeira aula e começarei fazendo-lhe a seguinte pergunta: você sabe a diferença entre as seguintes expressões?

a)
$$f(X) = X^2 + X + 1, X \in \mathbb{R}$$
.

b)
$$X \in \mathbb{R} \text{ tal que } X^2 + X + 1 = 0.$$

c)
$$X^2 + X + 1$$
.

Até o momento, você deveria saber tratarem-se, respectivamente, de uma função polinomial, uma equação polinomial e um polinômio. Para diferenciarmos um objeto de um outro se faz necessário saber-

mos a definição precisa de cada um deles. Neste caso, o que é uma função? O que é uma equação algébrica? O que é um polinômio?

À luz da teoria dos conjuntos, a diferença entre função e equação torna-se evidente. Os nomes variável e incógnita servem justamente para diferenciarmos o papel de x quando o mesmo representa o elemento genérico do domínio de uma função ou uma solução genérica de uma equação. Já o x figurando-se em um polinômio passa a ser chamado de indeterminada.

Nesta aula, definiremos polinômios via um certo tipo de sequências. Esta definição evita o uso de indeterminada e ressalta a importância da estrutura do anel dos coeficientes na estrutura de anel dos polinômios.

Estruturas Algébricas II

1.2 Polinômios

A definição de polinômio que trazes consigo certamente é como uma expressão formal do tipo

$$a_n x^n + \dots + a_1 x^1 + a_0$$

em que a_0, a_1, \ldots, a_n são números reais e $i \in \mathbb{Z}$ é um inteiro positivo para todo $i, 0 \le i \le n$.

Mas, você sabe o que é uma expressão formal? Qual o significado do termo ax^n ? Isto é um produto ou meramente uma aglutinação de letras? Os coeficientes a_i 's devem necessariamente ser reais ou complexos? O que mudaria no conjunto dos polinômios se considerássemos seus coeficientes em \mathbb{Q} , em \mathbb{Z} ou até mesmo em \mathbb{Z}_n ? Até que ponto a estrutura algébrica dos coeficientes interfere na estrutura algébrica do conjunto de polinômios? E o x, o que realmente ele representa?

A definição a seguir tanto evita qualquer tipo de obstrução psicológica quanto resolve a crise existencial dos polinômios e do x enquanto indeterminada.

Definição 1.1. Seja A um anel. Um polinômio com coeficientes no anel A é uma sequência infinita de elementos em A escrita na forma

$$(a_0, a_1, a_2, \ldots)$$

na qual todos os a_i 's são nulos exceto para uma quantidade finita de índices. Os elementos a_0, a_1, a_2, \dots são chamados coeficientes do polinômio.

Usaremos o símbolo \mathcal{P}_A para denotar o conjunto de todos os polinômios definidos sobre um anel A. Dois polinômios $P = (a_0, a_1, a_2, \ldots)$ e $Q = (b_0, b_1, b_2, \ldots)$ em \mathcal{P}_A são iguais se são iguais como sequências, isto é, $a_i = b_i$ para cada índice i.

A sequência nula $(0,0,0,\ldots)$ é um polinômio chamado polinômio nulo e denotado por 0. Se $P=(a_0,a_1,a_2,\ldots)\in\mathcal{P}_A$ é não nulo então existe $n\geq 0$ tal que $a_n\neq 0$ e $a_i=0$ para todo i>n. Tal inteiro n é chamado grau de P e denotado por deg P. Em símbolos,

$$deg \ P := max\{i : a_i \neq 0\}, \quad (P \neq 0).$$

OBS 1.1. O grau do polinômio nulo não está definido. No entanto, a convenção $deg~(0,0,0,\ldots)=-\infty$ não põe abaixo nenhuma das propriedades requeridas para o grau de polinômios. Definiremos deg $0=\infty$ para estendermos a noção de grau à todos polinômios. O uso deste símbolo requer certa maturidade matemática mas, para nossos propósitos, basta termos em mente que $-\infty+k=-\infty$ qualquer que seja $k\in\mathbb{Z}$.

1.3 A estrutura algébrica dos polinômios e o significado da expressão $a_n x^n + \dots a_1 x + a_0$

Seja A um anel. Por definição de anel, estão definidas em A duas operações: a adição $(a,b)\mapsto a+b$ e a multiplicação $(a,b)\mapsto a.b$ em que $(a,b)\in A\times A$. Usaremos tais operações em A para induzir uma adição e uma multiplicação no conjunto dos polinômios \mathcal{P}_A .

Teorema 1.1. As operações

Adição:

$$(a_0, a_1, a_2, \ldots) + (b_0, b_1, b_2, \ldots) = (c_0, c_1, c_2, \ldots)$$

onde $c_k = a_k + b_k$ para todo índice k.

Multiplicação:

$$(a_0, a_1, a_2, \ldots).(b_0, b_1, b_2, \ldots) = (c_0, c_1, c_2, \ldots)$$

onde $c_k = a_0b_k + a_1b_{k-1} + \cdots + a_{k-1}b_1 + a_kb_0$ para todo índice k.

Estruturas Algébricas II

<u>AULA</u>

estão bem definidas em \mathcal{P}_A .

Prova: Devemos mostrar que \mathcal{P}_A é fechado com respeito a tais operações. Sejam P e Q dois polinômios em \mathcal{P}_A . Se P ou Q é o polinômio nulo então P+Q é P ou Q e PQ=0. Suponhamos então P e Q ambos não nulos de graus n e m, respectivamente. Se $k>max\{n,m\}$ então $a_k+b_k=0$, por definição de grau. Com relação ao produto, se k>n+m então $c_k=\sum_{i=0}^{i=k}a_ib_{k-i}$ é nulo. De fato, se i>n então $a_i=0$ donde $a_ib_{k-i}=0$. Se $i\leq n$ então $-i\geq -n$. Deste modo, k>n+m implica $k-i>n+m-i\geq n+m-n=m$ donde $a_ib_{k-i}=0$ pois $b_{k-i}=0$. Assim, $c_k=0$ para todo k>n+m. \square

O propósito de definir tais operações em \mathcal{P}_A é determinar uma estrutura de anel compatível com a estrutura do anel A de modo que A possa ser visto como subanel de \mathcal{P}_A .

Teorema 1.2. A estrutua de anel em A induz uma estrutura de anel em $(\mathcal{P}_A, +, \bullet)$. Além disso, se A é comutativo e/ou com identidade então assim é \mathcal{P}_A .

Prova: Com relação à adição devemos mostrar que \mathcal{P}_A é um grupo abeliano. Mais precisamente,

- G1 Elemento neutro: O polinômio nulo $\mathbf{0} = (0, 0, 0, \ldots)$ é tal que $\mathbf{O} + P = P + = P$ qualquer que seja $P \in \mathcal{P}_A$. Logo, $\mathbf{0}$ é o elemento neutro.
- G2 Inverso aditivo: Se $P = (a_0, a_1, a_2, ...) \in \mathcal{P}_A$ então $-P = (-a_0, -a_1, -a_2, ...) \in \mathcal{P}_A$ é tal que $P + (-P) = \mathbf{0}$. Logo, todo polinômio admite inverso aditivo.
- G3 Associatividade: Sejam $P_1 = (a_0, a_1, a_2, ...),$ $P_2 = (b_0, b_1, b_2, ...)$ e $P_3 = (c_0, c_1, c_2, ...)$ polinômios em \mathcal{P}_A .

Desde que

$$(a_i + b_i) + c_i = a_i + (b_i + c_i)$$

em A segue que $(P_1 + P_2) + P_3 = P_1 + (P_2 + P_3)$.

G4 Comutatividade: Analogamente, a comutatividade em \mathcal{P}_A decorre diretamente da comutatividade em A.

Com relação à multiplicação:

M1 **Associatividade**: Sejam $A = (a_0, a_1, a_2, ...)$, $B = (b_0, b_1, b_2, ...)$ e $C = (c_0, c_1, c_2, ...)$ polinômios em \mathcal{P}_A . Por definição, a n-ésima coordenada do produto (A.B).C é

$$\sum_{i=0}^{n} (A.B)_{i}.c_{n-i} = \sum_{i=0}^{n} \left[\sum_{j=0}^{i} a_{j}b_{i-j} \right] c_{n-i}$$

$$= \sum_{i=0}^{n} \sum_{j=0}^{i} a_{j}b_{i-j}c_{n-i}$$

$$= \sum_{u+v+w=n} a_{u}b_{v}c_{w} \quad (u,v,w \ge 0) \quad (*)$$

Por outro lado, a n-ésima coordenada do produto A.(B.C) é

$$\sum_{r=0}^{n} a_r(B.C) = \sum_{r=0}^{n} \left[\sum_{s=0}^{n-r} c_s b_{n-r-s} \right]$$

$$= \sum_{r=0}^{n} \sum_{s=0}^{n-r-s} a_r b_s c_{n-r-s}$$

$$= \sum_{u+v+w=n} a_u b_v c_w \ (u, v, w \ge 0) \quad (**)$$

Deste modo, $[(A.B).C]_n = [A.(B.C)]_n$ para todo índice n. Isto mostra a associatividade.

<u>AULA</u>

• Distributividade : Sejam $A, B, C \in \mathcal{P}_A$ como anteriormente. Então,

$$[A.(B+C)]_n = \sum_{i=0}^n a_i \cdot (B+C)_{n-i}$$

$$= \sum_{i=0}^n a_i \cdot (b_{n-i} + c_{n-i})$$

$$= \sum_{i=0}^n a_i \cdot b_{n-i} + a_i c_{n-i}$$

$$= \sum_{i=0}^n a_i \cdot b_{n-i} + \sum_{i=0}^n a_i \cdot c_{n-i}$$

$$= A.B + A.C$$

Logo, A.(B+C)=A.B+A.C. Do mesmo modo, (A+B).C=A.C+B.C.

Isto mostra que $(\mathcal{P}_A, +, \bullet)$ é um anel. Se A tem identidade 1_A , então $(1_A, 0, 0, 0, \ldots) \in \mathcal{P}_A$ é a identidade de \mathcal{P}_A (verifique!) e se A é comutativo então

$$[A.B]_n = \sum_{i=0}^n a_i b_{n-i} = \sum_{i=0}^n b_{n-i} a_i = \sum_{i=0}^n b_i a_{n-i}.$$

Donde A.B = B.A. Isto conclui a demonstração.

O próximo passo é tornarmos A um subanel de \mathcal{P}_A . Lembramos que um subanel de um anel B é um subconjunto $A \subset B$ tal que A é um anel com as operações definidas em B. Se, além disso, B é anel com identidade então é exigido, adicionalmente, que $1_A \in B$. Um anel B é dito uma extensão de um anel A se A é subanel de B. Costuma-se denotar isto simplesmente por $A \subset B$.

Queremos tornar \mathcal{P}_A uma extensão de A de modo que se $a, b \in A$ e P_a, P_b são os polinômios associados aos elementos a e b, respectivamente, então $P_{a+b} = P_a + P_b$ e $P_{ab} = P_a.P_b$. Lembra-se de

homomorfismos de anéis? Desejamos definir um homomorfismo de A em \mathcal{P}_A . Uma função $\phi:A\to\mathcal{P}_a$ tal que $\phi(a+b)=\phi(a)+\phi(b)$ e $\phi(a.b)=\phi(a).\phi(b)$. Além disso, se A é um anel comutativo com identidade devemos ter satisfeita a condição $\phi(1_A)=1_{\mathcal{P}_A}$. Queremos também que Im $\phi\subset\mathcal{P}_A$ seja uma cópia de A. Isto se realiza exigindo-se que o homomorfismo ϕ seja injetivo. Deste modo, A será isomorfo ao anel Im $\phi\subset\mathcal{P}_A$ e então poderemos fazer a identificação $a=\phi(a)=P_a$. Em álgebra, tal procedimento é canônico quando se quer tornar um anel A subanel de outro anel B e não se tem $A\subset B$. Tudo isto resume-se por meio de um teorema.

Teorema 1.3. Seja \mathcal{P}_A o anel dos polinômios sobre um anel A. Se $A^* \subset \mathcal{P}_A$ é o conjunto de todos os polinômios da forma $(a,0,0,0\ldots)$, $a \in A$, então A^* é um subanel de \mathcal{P}_A isomorfo à A.

Prova: Defina a aplicação $\phi: A \to A^*, a \mapsto \phi(a) = P_a = (a, 0, 0, 0, \ldots)$. Você mesmo, prezado aluno, pode verificar que ϕ é bijetiva (Faça isto!). Além disso,

$$\phi(a+b) = (a+b,0,0,0,\dots) = (a,0,0,0,\dots) + (b,0,0,0,\dots) = \phi(a) + \phi(b)$$

e

$$\phi(a.b) = (a.b, 0, 0, 0, \dots) = (a, 0, 0, 0, \dots).(b, 0, 0, 0, \dots) = \phi(a).\phi(b).$$

Finalmente, $\phi(1_A) = (1_A, 0, 0, 0, ...) = 1_{\mathcal{P}_A}$. Assim, ϕ é um isomorfismo de anéis e caso A tenha identidade, ϕ é um isomorfismo de anéis com identidade. \square

Até o momento, estabelecemos os fatos básicos sobre polinômios. Agora, precisamos achar um jeito de exibir um polinômio em sua forma usual. Denotaremos por x ao polinômio $(0,1,0,0,0,\ldots)$. De acordo com o teorema acima, podemos fazer a identificação

Estruturas Algébricas II

<u>AULA</u>

 $a:=(a,0,0,0,\ldots)$ para cada $a\in A$ e obtermos a inclusão de anéis $A\subset \mathcal{P}_A$. Deste modo, ao escrevermos a estaremos pensando no polinômio $(a,0,0,0,\ldots)$. Com isto em mente vamos analisar as potências x^n de x e os produtos ax^n .

Por definição de potência:

$$x^{0} = 1_{\mathcal{P}_{A}} = (1_{A}, 0, 0, 0, \ldots)$$

 $x^{1} = x = (0, 1, 0, 0, 0, \ldots)$
 $x^{2} = x \cdot x = (0, 0, 1, 0, 0, 0, \ldots)$

e $x^n=x^{n-1}\cdot x$. Supondo $x^{n-1}=(0,\ldots,0,1,0,\ldots)$ com 1 na entrada de índice n-1 (hipótese indutiva!) obtemos

$$x^n = x^{n-1} \cdot x = (0, \dots, 0, 1, 0, \dots)$$

com 1 na posição de índice n. Logo, por indução segue que

$$X^n = (a_0, a_1, a_2, \dots, a_n, \dots)$$

em que $a_n=1$ e $a_i=0$ para todo $i\neq n$. Temos ainda

$$ax^n = (a, 0, 0, 0, \ldots) \cdot (a_0, a_1, a_2, \ldots)$$

= $(aa_0, aa_1, aa_2, \ldots, aa_n \ldots)$
= $(0, 0, 0, \ldots, 0, a, 0, \ldots)$

pois $a_n = 1$ e $a_i = 0$ para todo $i \neq n$. Assim, dado um polinômio (a_0, a_1, a_2, \ldots) de grau n em \mathcal{P}_A podemos escrever

$$(a_0, a_1, a_2, \dots) = (a_0, 0, 0, \dots) + (0, a_1, 0, \dots) + \dots + \dots + (0, \dots, 0, a_n, 0, \dots)$$
$$= a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Pela definição de igualdade de polinômios temos ainda que se $b_0 + b_1x + b_2x^2 + \cdots + b_mx^m$ é uma outra forma de expressar o polinômio (a_0, a_1, a_2, \ldots) então m = n e $a_i = b_i$ para todo índice i. Logo, todo polinômio $(a_0, a_1, a_2, \ldots) \in \mathcal{P}_A$ com grau n se escreve, de maneira única, na forma

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
.

OBS 1.2. Nesta forma de expressão para polinômios usamos a notação A[x] em vez de \mathcal{P}_A . A notação A[x] é muito mais sugestiva. Por exemplo, se $A=\mathbb{R}$ então podemos ver A[x] como um espaço vetorial sobre \mathbb{R} (você saberia exibir uma base e dizer qual a sua dimensão?). Outra vantagem é que na notação A[x], as operações com polinômios recaem naquelas vistas no ensino médio e fundamental. Nesta notação, costuma-se denotar polinômios pelas letras do alfabeto latino acrescidas de x entre parêntese, isto é, $a_0 + a_1x + a_2x^2 + \cdots + a_nx^n = p(x)$, por exemplo.

OBS 1.3. Um elemento ξ é chamado de indeterminada sobre um anel A se as expressões

$$a_0 + a_1 \xi + a_2 \xi^2 + \dots + a_n \xi^n$$

estão definidas para todo inteiro não negativo n e a aplicação

$$\varphi: A[x] \to A[\xi]$$

definida por

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \mapsto a_0 + a_1 \xi + a_2 \xi^2 + \dots + a_n \xi^n$$

define um isomorfismo de anéis.

1.4 Termos e Monômios

Seja A um anel com identidade. Um polinômio da forma ax^n é chamado termo. Um termo com coefiente 1 é denominado monômio

Estruturas Algébricas II AULA

ou monomial. Dado um polinômio de grau n

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

define-se:

Notação

Coeficientes: $a_0, a_1, \dots a_n$

Termos: $a_0, a_1 x, \dots a_n x^n$

Termo líder: $a_n x^n$ LT (f)

Monômio líder: x^n LM (f)

Coeficiente líder: a_n LC (f)

Termo constante: a_0

 \mathbf{OBS} 1.4. Um polinômio é dito mônico se possui termo líder monomial.

OBS 1.5. Em alguns textos, o adjetivo *líder* é trocado por *dominante* e as definições acima ficam: termo dominante, coeficiente dominante e monômio dominante. Neste texto, usaremos líder em conformidade com uma notação mais universal.

1.5 Conclusão

Na aula de hoje, elaboramos uma definição de polinômios que evita qualquer tipo de expressões vagas e torna clara a noção de indeterminada. Vimos duas representações de um polinômio: por meio de sequências e por meio de uma indeterminada x. A segunda é mais apelativa e preferível perante a primeira. Por exemplo, a estrutura de espaço vetorial de $\mathbb{R}[x]$ sobre \mathbb{R} com base infinita $1, x, x^2, \ldots$, torna-se muito mais evidente usando indeterminada.

RESUMO

Seja A um anel qualquer (não necessariamente comutativo com identidade).

Definições básicas

Polinômio sobre A := sequência infinita $(a_0, a_1, a_2, ...)$ com $a_i \in A$ na qual todos os elementos a_i^s são nulos exceto para um número finito de termos. Os elementos a_i 's são chamados coeficientes do polinômio $(a_0, a_1, a_2, ...)$.

 $\mathcal{P}_A := \text{conjunto dos polinômios com coeficientes em } A.$

 $(0,0,0,\ldots) \in \mathcal{P}_A$ é chamado polinômio nulo.

Grau de Polinômios

$$deg P = \begin{cases} -\infty, & \text{se } P = 0\\ n = \max\{n : a_n \neq 0\}, & \text{se } P \neq 0 \end{cases}$$

Operações em A[x]:

Adição:

$$(\ldots, a_i, \ldots) + (\ldots, b_i, \ldots) = (\ldots, a_i + b_i, \ldots)$$

Multiplicação:

$$(\ldots, a_i, \ldots) \cdot (\ldots, b_i, \ldots) = (\ldots, c_i, \ldots)$$

onde $c_i = \sum_{j+k=i} a_j b_k$.

Estrutura algébrica: $(\mathcal{P}_A, +, \cdot)$ é um anel.

Quadro comparativo entre a estrutura do anel A e a estrutura do anel A[x]

<u>AULA</u>

A	A[x]
Comutativo	Sim
Com identidade	Sim
Domínio	Sim
Corpo	Não

A Aplicação

$$\begin{array}{ccc} \phi: A & \to & A[x] \\ & a & \mapsto & (a,0,0,0,\ldots) \end{array}$$

define um isomorfismo de A no subconjunto

$$A^* = \{(a, 0, 0, 0, \dots) : a \in A\} \subset \mathcal{P}_A.$$

Os elementos de A^* são chamados polinômios constantes ou de grau zero. (O termo constante refere-se ao fato da função associada aos polinômios em A^* serem constantes.

O significado da expressão $a_0 + a_1x + \ldots + a_nx^n$:

Fazendo as identificações:

$$a := (a, 0, 0, 0, \dots)$$

$$x := (0, 1, 0, 0, 0, \dots)$$

Pode-se mostrar que

$$x^n = (0, 0, \dots, 0, 1, 0, \dots)$$

com deg $x^n = n$. E

$$ax^n = (0, 0, \dots, 0, a, 0, \dots)$$

também de grau n. Nestas condições, todo polinômio

$$(a_0, a_1, a_2, \ldots) \in \mathcal{P}_A$$

de grau n pode ser escrito de maneira única na forma:

$$a_0 + a_1 x + \dots a_n x^n.$$

Notação:
$$A[x] := \{p(x) = a_0 + a_1 x + \dots a_n x^n : a_i \in A\}.$$

A composição de um polinômio

Dado

$$a_0 + a_1 x + \dots a_n x^n \in \mathcal{P}_A$$

defini-se

Notação

Coeficientes: $a_0, a_1, \dots a_n$

Termos: $a_0, a_1 x, \dots a_n x^n$

Termo líder: $a_n x^n$ LT (f)

Monômio líder: x^n LM (f)

Coeficiente líder: a_n LC (f)

Termo constante: a_0

PRÓXIMA AULA

Na próxima aula, restringiremos nosso estudo de polinômios para polinômios definidos sobre um corpo. O fato do anel de coeficientes ser um corpo permite definir um algoritmo de divisão no anel de polinômios. Tal algoritmo é o pilar da aritmética dos anéis de polinômios definidos sobre corpos.

<u>AULA</u>

1

ATIVIDADES

ATIV. 1.1. Nos itens abaixo são dados polinômios representados por sequência e pelo uso de indeterminada. Faça a transposição de uma representação para a outra. Em cada caso, determine o grau e o termo líder usando as notações dadas no texto.

- a) $(0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, \ldots)$.
- b) $(0, 2, 0, 4, 0, 6, 0, 8, 0, 0, 0, \ldots)$
- c) $9x^8 3x^5 + x^3 x + 4$.
- d) $(3x-7)(x^3-x+1)$.

ATIV. 1.2. Efetue a operação indicada e simplifique sua resposta. Em cada caso, determine o grau e o termo líder usando as notações usadas no texto.

- a) $(x+2)^3 \text{ em } \mathbb{Z}_3[x]$.
- b) $(x+1)^5 \text{ em } \mathbb{Z}_5[x]$.
- c) $(ax + b)^p$ em $\mathbb{Z}_p[x]$, p primo.
- d) $(x^2 3x + 2)(2x^3 4x + 1)$ em $\mathbb{Z}_7[x]$

Sugestão: Nos itens de (a), (b) e (c) use a expansão do binômio de Newton. Note que $(a+b)^p = a^p + b^p$ em \mathbb{Z}_p . No item (d) aplique a propriedade distributiva.

ATIV. 1.3. Quais dos seguintes subconjuntos de A[x] são subanéis de A[x]?

- a) Polinômios com termo constante nulo.
- b) $B = \{a_0 + a_1x + \dots + a_nx^n : a_i = 0, \text{ para } i \text{ impar } \}.$
- c) $B = \{a_0 + a_1x + \dots + a_nx^n : a_i = 0 \text{ sempre que } i \text{ for par } \}$

ATIV. 1.4. Mostre que se A é um domínio de integridade então A[x] é um dominio de integridade. Se k é um corpo então k[x] também é um corpo?

Sugestão: Para a primeira parte, suponha A[x] não domínio e mostre que A necessariamente não é domínio. Para a segunda, mostre que x não admite inverso multiplicativo em A[x], isto é, a igualdade g(x).x = 1 para $g(x) \in A[x]$ conduz à uma contradição.

ATIV. 1.5. Considere a aplicação $\varphi:A\to A[x]$ definida por $\varphi(a)=(0,a,0,0,0\ldots)$. Tal aplicação é um homomorfismo de anéis?

Sugestão: Repare se a igualdade $\varphi(a.b) = \varphi(a).\varphi(b)$ é ou não satisfeita.

ATIV. 1.6. Mostre que o grau de polinômios satisfaz às seguintes propriedades:

- i) $\deg p(x) + q(x) \le \max \{ \deg f(x), \deg q(x) \}$
- ii) deg p(x)q(x) = deg p(x) + deg q(x), se A é domínio.
- iii) Dê um exemplo com desigualdade estrita no item (i) e caracterize quando ocorre tal desigualdade.

LEITURA COMPLEMENTAR

GONÇALVES, Adilson, Introdução à álgebra, IMPA, Projeto Euclides, 5.ed., Rio de Janeiro, 2008.

HUNGERFORD, Thomas W., Abstract algebra: an introduction, Saunders College Publishing, 1990.

KAPLANSKY, I., Introdução à teoria de Galois, Notas de Matemática \mathbf{n}^o 13, IMPA, 1966.