

# Expansões

#### **META**

 Apresentar a expansão binomial e multinomial.

#### **OBJETIVOS**

Ao final da aula o aluno deverá ser capaz de:

- Identificar e utilizar algumas propriedades dos coeficientes binomiais;
- Expandir produto de binômios por recorrência e combinatorialmente;
- Expandir produto multinomial;

### PRÉ-REQUISITOS

- Princípio da indução e relação de recorrência (aula 1);
- Combinação simples e permutação com repetição (aula 3).



## 4.1 Introdução

Caro aluno, nesta quarta aula estudaremos expansão binomial e multinomial. Inicialmente, demonstraremos uma das mais famosas relações entre coeficientes binomiais: a relação de Stifel, base para a construção do triângulo de Pascal. Em seguida, mostraremos como fazer a expansão binomial por dois métodos: expansão recorrente e expansão de Newton. Enquanto o primeiro utiliza relação de recorrência para obter os coeficientes da expansão, o segundo faz uso dos coeficientes binomiais previamente estudados. Para finalizar, apresentaremos a fórmula da expansão multinomial de Leibnitz e um procedimento útil para calcular produto de polinômios.

#### 4.2 Coeficientes Binomiais

Como vimos na aula anterior, a combinação de n, p a p, denotado por  $C_n^p$ , é o número total de diferentes subconjuntos contendo p elementos cada, tomados de um conjunto contendo n elementos  $(p \leq n)$ . Estes números  $C_n^p$  são chamados <u>coeficientes binomais</u> pelo fato de serem os coeficientes de  $x^p$  na expansão de  $(1+x)^n$ , como veremos na seção seguinte. Já vimos também, na seção sobre combinações complementares, que  $C_n^p = C_n^{n-p}$ . Nesta seção apresentaremos algumas propriedades dos coeficientes binomiais.

**Proposição 4.1** (Relação de Stifel). 
$$C_n^p = C_{n-1}^{p-1} + C_{n-1}^p$$

**Demonstração:** Seja a um dos n elementos do conjunto A. Quando tomamos um subconjunto arbitrário na tabela que contém todos os  $C_n^p$  subconjuntos contendo exatamente p elementos existem apenas duas possibilidades com relação à presença de a: ou a está ou

não está presente. Portanto, somando o número de subconjuntos com p elementos e que contém a, ou seja,  $C_{n-1}^{p-1}$ , com o número de subconjuntos com p elementos que não contém a, isto é,  $C_{n-1}^p$ , temos  $C_n^p = C_{n-1}^{p-1} + C_{n-1}^p$ . 

A relação de Stifel dá uma forma recursiva de construir o triângulo de Pascal. A seguir, demonstraremos uma propriedade que os coeficientes do triângulo de Pascal possuem: a soma dos coeficientes que estão na coluna j acima da linha i é o coeficiente da linha i e coluna j + 1.

Proposição 4.2. 
$$C_p^p + C_{p+1}^p + \cdots + C_{p+n}^p = C_{p+n+1}^{p+1}$$

Demonstração: Pela relação de Stifel, cada uma das igualdades abaixo é verdadeira:

$$C_{p+1}^{p+1} = C_p^p + C_p^{p+1} = C_p^p$$

$$C_{p+2}^{p+1} = C_{p+1}^p + C_{p+1}^{p+1}$$

$$C_{p+3}^{p+1} = C_{p+2}^p + C_{p+2}^{p+1}$$

$$\vdots$$

$$C_{p+n+1}^{p+1} = C_{p+n}^p + C_{p+n}^{p+1}$$

 $C^{p+1}_{p+n+1}=C^p_{p+n}+C^{p+1}_{p+n} \\$  Somando membro a membro estas igualdades e cancelando termos iguais, temos  $C_{p+n+1}^{p+1} = C_p^p + C_{p+1}^p + \dots + C_{p+n}^p$ . 

**Exemplo 4.1** (Soma dos n primeiros inteiros positivos). Achar uma fórmula para a soma dos n primeiros inteiros positivos.

Observe que  $1+2+\cdots+n=C_1^1+C_2^1+\cdots+C_n^1$ . Aplicando a proposição anterior com p=1 e n=n-1, segue que a soma nos n primeiros inteiros positivos vale $C_{n+1}^2 = \frac{(n+1)!}{(n-1)!2!} = \frac{n(n+1)}{2}.$ 



## 4.3 Expansão Binomial

#### 4.3.1 Expansão Recorrente

Suponha que  $\sum_{i=0}^{n} A_i x^i$  seja a expansão de  $(ax+b)^n$ . Se desejamos obter a expansão  $\sum_{i=0}^{n+1} B_i x^i$  de  $(ax+b)^{n+1}$ , podemos fazer:

$$\sum_{i=0}^{n+1} B_i x^i = (ax+b)^{n+1}$$

$$= (ax+b) \cdot (ax+b)^n$$

$$= (ax+b) \cdot \sum_{i=0}^n A_i x^i$$

$$= \sum_{i=0}^n a A_i x^{i+1} + \sum_{i=0}^n b A_i x^i$$

$$= \left(aA_n x^{n+1} + \sum_{i=0}^{n-1} a A_i x^{i+1}\right) + \left(\sum_{i=1}^n b A_i x^i + b A_0\right)$$

$$= aA_n x^{n+1} + \sum_{i=1}^n (aA_{i-1} + bA_i) x^i + bA_0,$$

onde na penúltima linha explicitamos i=n na primeira soma e i=0 na segunda; e para obter a última igualdade, reescrevemos  $\sum_{i=0}^{n-1} aA_i x^{i+1} \text{ como } \sum_{i=1}^n aA_{i-1} x^i.$ 

Pela igualdade entre polinômios, obtemos as seguintes igualdades:

$$B_0 = bA_0,$$
  $B_{n+1} = aA_n,$   $B_i = aA_{i-1} + bA_i, i \in J_n$ 

A partir desse método de expansão, conseguimos fazer a expansão de binômios com certa rapidez. Veja os exemplos seguintes, que mostra um esquema que pode ser seguido:

**Exemplo 4.2** (Potência de binômio). Expandir  $(2x+5)^4$ .

#### Solução:

Logo, 
$$(2x+5)^4 = 625 + 1000x + 600x^2 + 160x^3 + 16x^4$$
.

O exemplo a seguir mostra que a expansão recorrente pode ser usada também para expandir o produto de binômios.

**Exemplo 4.3** (Produto de binômios distintos). Expandir (2x + 5)(3x + 4)(4x + 2)(2x - 1).

#### Solução:

Logo, 
$$(2x+5)(3x+4)(4x+2)(2x-1) = -40 - 46x + 148x^2 + 184x^3 + 48x^4$$
.

Outra aplicação é a determinação de um polinômio com raízes fixadas, como no próximo exemplo.

**Exemplo 4.4** (Polinômio). Seja P(x) um polinômio com raízes 2,-4,7, sendo que -4 é de multiplicidade 2.

**Solução:** Podemos escrever  $P(x) = (x-2)(x+4)^2(x-7)$  então, como no exemplo anterior

Assim, 
$$P(x) = 224 - 32x - 42x^2 - x^3 + x^4$$

#### 4.3.2 Expansão de Newton

As expansões de  $(a + b)^2$  e  $(a + b)^3$  conhecidas como produtos notáveis são generalizadas para a expansão de  $(a + b)^n$ . Vejamos o que acontece nos casos simples para utilizarmos raciocínio análogo para a generalização. Lembre-se que

$$(a+b)^2 = a^2 + 2ab + b^2$$
  
 $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ 

Note agora que na expansão de  $(a+b)^2$  os termos são do tipo  $a^ib^j$  com i+j=2 enquanto que em  $(a+b)^3$  os termos também são do tipo  $a^ib^j$  mas agora com i+j=3. Em geral, na expansão de  $(a+b)^n$  aparecerão termos do tipo  $a^ib^j$  com i+j=n. Como os fatores a e b podem aparecer em ordens diferentes o mesmo número de vezes i e j, existirão tantos termos  $a^ib^j$  quantas são as permutações do conjunto  $\{(a)_i,(b)_j\}$ , que sabemos ser  $\frac{n!}{i!j!}$ .

Teremos portanto na expansão termos do tipo

$$\frac{n!}{i!j!}a^ib^j \text{ ou } \frac{n!}{(n-j)!j!}a^{n-j}b^j = \binom{n}{j}a^{n-j}b^j$$

Fazendo j variar de 0 a n teremos toda expansão, isto é,

$$(a+b)^n = \sum_{j=0}^n \binom{n}{j} a^{n-j} b^j,$$

denominada Fórmula de Expansão Binomial de Newton.

Façamos a demonstração da fórmula pelo princípio de indução.

(1) Para n=1 a fórmula é válida, uma vez que

$$(a+b)^1 = \sum_{j=0}^1 \begin{pmatrix} 1 \\ j \end{pmatrix} a^{1-j}b^j = \begin{pmatrix} 1 \\ 0 \end{pmatrix} a + \begin{pmatrix} 1 \\ 1 \end{pmatrix} b = a+b$$

(2) Suponha então a fórmula válida para n = k, então

$$\begin{array}{lll} (a+b)^{k+1} & = & (a+b)(a+b)^k \\ (a+b)^{k+1} & = & (a+b)\sum_{j=0}^k \binom{k}{j} a^{k-j}b^j \\ (a+b)^{k+1} & = & \sum_{j=0}^k \binom{k}{j} a^{(k+1)-j}b^j + \sum_{j=0}^k \binom{k}{j} a^{k-j}b^{j+1} \\ (a+b)^{k+1} & = & \binom{k}{0} a^{k+1} + \sum_{j=1}^k \binom{k}{j} a^{(k+1)-j}b^j + \\ & + \sum_{j=0}^{k-1} \binom{k}{j} a^{k-j}b^{j+1} + \binom{k}{k} b^{k+1} \\ (a+b)^{k+1} & = & a^{k+1} + b^{k+1} + \sum_{j=1}^k \left[ \binom{k}{j} + \binom{k}{j-1} \right] a^{(k+1)-j}b^j \\ \text{Pela relação de Stiefel, segue que } \binom{k}{j} + \binom{k}{j-1} = \\ \binom{k+1}{j}, \log o, \\ (a+b)^{k+1} & = & a^{k+1} + b^{k+1} + \sum_{j=1}^k \binom{k+1}{j} a^{(k+1)-j}b^j \\ (a+b)^{k+1} & = & \sum_{j=0}^{k+1} \binom{k+1}{j} a^{(k+1)-j}b^j \end{array}$$



Portanto, a fórmula é válida para n = k + 1

Pelo princípio de indução segue que a expansão é válida para todo  $n \in \mathbb{N}.$ 

Vejamos o exemplo 4.2 resolvido agora pela expansão de Newton.

**Exemplo 4.5** (Potência de binômio). Expandir  $(2x+5)^4$ . Solução:

$$(2x+5)^4 = \begin{pmatrix} 4 \\ 0 \end{pmatrix} (2x)^4 (5)^0 + \begin{pmatrix} 4 \\ 1 \end{pmatrix} (2x)^4 (4)^1 +$$
$$\begin{pmatrix} 4 \\ 2 \end{pmatrix} (2x)^2 (5)^2 + \begin{pmatrix} 4 \\ 3 \end{pmatrix} (2x)^1 (5)^3 +$$
$$\begin{pmatrix} 4 \\ 4 \end{pmatrix} (2x)^0 (5)^4$$

$$(2x+5)^4 = 1.16x^4 \cdot 1 + 4.8x^3 \cdot 5 + 6.4x^2 \cdot 25 + 4.2x \cdot 125 + 1.1.625$$
$$(2x+5)^4 = 16x^4 \cdot 160x^3 + 600x^2 + 1000x + 625$$

como obtido no exemplo 4.2.

## 4.4 Expansão Multinomial

Na seção anterior, estudamos a expansão do binômio  $(a + b)^n$ . Nesta, estudaremos a expansão multinomial  $(a_1 + \cdots + a_k)^n$ . Como antes, se desenvolvermos os produtos obteremos termos do tipo:

$$a_1^{x_1} \dots a_k^{x_k}$$
, com  $\sum_{i=1}^k x_i = n$ 

Como os termos dessa forma para os mesmos expoentes podem provir de diversas ordens o número deles é dado pelo número de



permutações com elementos repetidos do conjunto  $\{(a_1)_{x_1},\ldots,(a_k)_{x_k}\}$  dado por  $PR(n;x_1,\ldots,x_k)=\frac{n!}{x_1!\ldots x_k!}$ .

Teremos portanto termos da forma:

$$\frac{n!}{x_1!\dots x_k!}a_1^{x_1}\dots a_k^{x_k}$$

Fazendo variar os  $x_i$  de todos modos possíveis obtemos todos os termos, portanto:

$$\left(\sum_{i=1}^{k} a_i\right)^n = \sum_{\sum x_i = n} \frac{n!}{x_1! \dots x_k!} a_1^{x_1} \dots a_k^{x_k},$$

denominada Fórmula de Expansão Multinomial de Leibnitz.

**Exemplo 4.6** (Expansão Multinomial). Expandir  $(a_1 + a_2 + a_3)^4$ .

Solução: A fórmula de expansão multinomial de Leibnitz diz que

$$(a_1 + a_2 + a_3)^4 = \sum_{x_1 + x_2 + x_3 = 4} \frac{4!}{x_1! x_2! x_3!} a_1^{x_1} a_2^{x_2} a_3^{x_3}$$

Para facilitar o trabalho, utilizamos a tabela a seguir:

|   | $x_1$ | $x_2$ | $x_3$ | $\frac{4!}{x_1!x_2!x_3!}$ | termos      |
|---|-------|-------|-------|---------------------------|-------------|
| 1 | 4     | 0     | 0     | 1                         | $a_1^4$     |
| 2 | 0     | 4     | 0     | 1                         | $a_2^4$     |
| 3 | 0     | 0     | 4     | 1                         | $a_3^4$     |
| 4 | 3     | 1     | 0     | 4                         | $4a_1^3a_2$ |
| 5 | 3     | 0     | 1     | 4                         | $4a_1^3a_3$ |
| 6 | 1     | 3     | 0     | 4                         | $4a_1a_2^3$ |
| 7 | 0     | 3     | 1     | 4                         | $4a_2^3a_3$ |
| 8 | 1     | 0     | 3     | 4                         | $4a_1a_3^3$ |

$$(a_1 + a_2 + a_3)^4 = (a_1^4 + a_2^4 + a_3^4)$$

$$+ 4(a_1^3 a_2 + a_1^3 a_3 + a_1 a_2^3 + a_2^3 a_3 + a_1 a_3^3 + a_2 a_3^3)$$

$$+ 6(a_1^2 a_2^2 + a_1^2 a_3^2 + a_2^2 a_3^2)$$

$$+ 12(a_1^2 a_2 a_3 + a_1 a_2^2 a_3 + a_1 a_2 a_3^2)$$

De uma maneira geral, desejamos obter um método eficiente para calcular o produto de dois polinômios quaisquer. Sabemos que se  $p(x) = \sum_{i=0}^{n} a_i x^i$  e  $q(x) = \sum_{i=0}^{n} b_i x^i$ , então o produto  $p(x)q(x) = \sum_{i=0}^{2n} c_i x^i$ , onde os coeficientes  $c_i$  são obtidos pelo produto convolutório  $c_i = \sum_{j=0}^{i} a_j b_{i-j}$ . Uma maneira prática para fazer esse produto é apresentado abaixo e exemplificado em seguida.

Sejam  $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$  e  $q(x) = b_m x^m + \cdots + b_1 x + b_0$ . Então o produto p(x)q(x) pode ser obtido rapidamente pela tabela abaixo. Colocamos os coeficientes de p(x) com índices em ordem decrescente na primeira linha e os de q(x) na primeira coluna da tabela, mas com os índices em ordem crescente. Fazemos o produto linha-coluna da tabela e somamos em diagonal. Observe que o resultado é o produto convolutório que desejamos.

|           | $a_n$               | $a_{n-1}$                   | <br>$a_0$        |              |
|-----------|---------------------|-----------------------------|------------------|--------------|
| $b_0$     | $a_n b_0$           | $a_{n-1}b_0$                | <br>$a_0b_0$     |              |
| $b_1$     | $a_n b_0$ $a_n b_1$ | $a_{n-1}b_1$                | <br>$a_0b_1$     |              |
|           |                     |                             | <br>             |              |
| $b_{m-1}$ | $a_n b_{m-1}$       | $a_{n-1}b_{m-1}$            | <br>$a_0b_{m-1}$ |              |
| $b_m$     | $a_n b_m$           | $a_{n-1}b_m$                | $a_0b_m$         |              |
|           |                     | $a_n b_{m-1} + a_{n-1} b_m$ | <br>             | <br>$a_0b_0$ |

Exemplo 4.7 (Produto Convolutório). Calcular

$$(x^2 + 2x + 1)(x^4 + 3x^3 + x^2 + 2).$$

**Solução:** Colocamos os coeficientes dos polinômio ordenadamente (inclusive os nulos) uma na primeira linha e outro na primeira coluna da tabela. Fazemos o produto linha-coluna da tabela e somamos em diagonal.

Portanto, 
$$(x^2 + 2x + 1)(x^4 + 3x^3 + x^2 + 2) = x^6 + 5x^5 + 8x^4 + 5x^3 + 3x^2 + 4x + 2.$$

## 4.5 Conclusão

Nesta aula, aplicamos a noção de combinação simples de n elementos p a p (aula 3) para obtermos a famosa relação de Stiefel que torna possível a construção do triângulo de Pascal de maneira recursiva. Continuamos utilizando a recursividade (aula 1) para expandir potência de binômios e até mesmo produto de binômios.



Pelo princípio da indução (aula 1), demonstramos a fórmula de expansão binomial de Newton com seus coeficientes binomiais. Por fim, utilizamos argumentos combinatoriais para obter a fórmula da expansão multinomial de Leibnitz.



#### **RESUMO**

Pela relação de Stifel,

$$C_n^p = C_{n-1}^{p-1} + C_{n-1}^p,$$

obtemos a propriedade

$$C_p^p + C_{p+1}^p + \dots + C_{p+n}^p = C_{p+n+1}^{p+1}$$

Se  $(ax+b)^n=\sum_{i=0}^nA_ix^i$ , então os coeficientes  $B_k$  da expansão de  $(ax+b)^{n+1}$  podem ser obtidos recursivamente por:

$$B_0 = bA_0,$$
  
 $B_{n+1} = aA_n,$   
 $B_i = aA_{i-1} + bA_i, i \in J_n$ 

A fórmula de Expansão Binomial de Newton é

$$(a+b)^n = \sum_{j=0}^n \binom{n}{j} a^{n-j} b^j,$$

Enquanto que a fórmula de Expansão Multinomial de Leibnitz

é

$$\left(\sum_{i=1}^{k} a_i\right)^n = \sum_{\sum x_i = n} \frac{n!}{x_1! \dots x_k!} a_1^{x_1} \dots a_k^{x_k},$$



## PRÓXIMA AULA



Na próxima aula, estudaremos funções geradoras. Como veremos, ela é uma ferramenta poderosa quando se deseja atacar problemas de combinatória. Para que sua leitura seja melhor aproveitada, faça uma revisão do enunciado do princípio da inclusão-exclusão (aula 2). Também é importante que os conceitos de arranjos, permutações e combinações (aula 3) estejam bem fixados e que já possua certa habilidade para calcular produto de polinômios (aula 4). Numa pequena parte da aula também será preciso ter conhecimentos elementares de cálculo: derivação e integração de polinômios.

## **ATIVIDADES**



**ATIVIDADE 4.1.** Usando o procedimento de Parker faça as expansões de:

- 1.  $(3x+4)^5$
- 2.  $(5x+1)^6$
- 3. (2x+4)(3x+1)(4x-3)(2x-5)
- 4. (3x+1)(2x-4)(5x+6)



# AULA 4

**ATIVIDADE 4.2.** Desenvolva pela fórmula do binômio de Newton:

1. 
$$(y-2)^9$$

2. 
$$(\frac{x}{2} + \frac{y}{3})^5$$

**ATIVIDADE 4.3.** Faça as expansões usando a fórmula de Leibnitz:

1. 
$$(a+b+c)^5$$

2. 
$$(x-y+2x^2)^5$$

ATIVIDADE 4.4. Expanda os produtos polinomiais:

1. 
$$(x^5 - 2x^3 + 3x - 1)(x^2 - 3x + 2)$$

2. 
$$(x-1)^3(x^2-x-2)^2$$

**ATIVIDADE 4.5.** Calcule o coeficiente de  $x^6$  em  $(2-3x)^{10}$ .

**ATIVIDADE 4.6.** Qual é o valor de n para que a razão entre o  $3^{\circ}$  e o  $2^{\circ}$  termo da expressão de  $(a+b)^{n+2}$  em potências crescentes de a, seja  $\frac{3a}{b}$ ?

**ATIVIDADE 4.7.** Qual é o valor de  $(1 - \sqrt{5})^5 - (1 + \sqrt{5})^5$ ?

ATIVIDADE 4.8. Qual é o valor numérico de  $a^4-4a^3b+6a^2b^2-4ab^3+b^4$  sabendo-se que:  $a=\frac{1+\sqrt{6}}{\sqrt[4]{5}}$  e  $b=\frac{\sqrt{6}-1}{\sqrt[4]{5}}$ ?

**ATIVIDADE 4.9.** Se a soma dos coeficientes de  $(2x+y)^n$  é 729 então qual é o valor de n?

**ATIVIDADE 4.10.** Se os coeficientes do  $5^{\circ},6^{\circ}$  e  $7^{\circ}$  termos de  $(x+y)^n$  estão em progressão aritmética, qual é o valor de n?



## **REFERÊNCIAS**



BARBOSA, R.M. Combinatória e Grafos. vol.1. Nobel: São Paulo, 1974.

BARBOSA, R.M. Combinatória e Grafos. vol.2. Nobel: São Paulo, 1975.

SANTOS, J.P.O., et al. Introdução à Análise Combinatória. Moderna: Rio de Janeiro, 2007.