Reais - Continuação

META:

Construção dos Números Reais .

OBJETIVOS:

Ao fim da aula os alunos deverão ser capazes de:

Identificar $\mathbb R$ como um corpo ordenado completo.

Resolver inequações.

Diferenciar um número Racional de um irracional.

PRÉ-REQUISITOS

Cortes de Dedekind.

12.1 Introdução

Caro aluno, finalmente mostraremos que \mathbb{R} é ordenado completo. Algumas demonstrações serão omitidas, mas vocês futuramente saberão estudá-las com mais maturidade. Além disso, identificaremos \mathbb{Q} como subconjunto de \mathbb{R} e apresentaremos também algumas propriedades de \mathbb{R} bem com resolver algumas inequações.

12.1.1 Continuação

Passo4: Se $\alpha, \beta, \gamma \in \mathbb{R}$ e $\beta < \gamma$ então $\alpha + \beta < \alpha + \gamma$.

Note que

$$\alpha + \beta = \{a + b; \ a \in \alpha, \ b \in \gamma\}$$

$$\alpha + \gamma = \{a + c; \ a \in \alpha, \ c \in \gamma\}$$

Como
$$\beta \subsetneq \gamma$$
, $\alpha + \beta \subsetneq \alpha + \gamma \Rightarrow \alpha + \beta < \alpha + \gamma$

Passo 5: Se $\alpha \in \mathbb{R}^+$ e $\beta \in \mathbb{R}^+$, definimos

$$\alpha\beta = \{ p \in \mathbb{Q}; \ p \le rs, \ r \in \alpha, s \in \beta, \ r > 0, \ s > 0 \}$$

$$1^* = \{ q \in \mathbb{Q}^*; \ q < 1 \}$$

Vamos mostrar que $\alpha\beta$ é corte:

 $\alpha\beta \neq \emptyset$ e $\alpha\beta \neq \mathbb{Q}$, donde vale I

Seja $q < p, p \in \alpha\beta$. Logo $a para algum <math>0 < r \in \alpha$ e $s \in \beta$ e $0 < s \in \beta$. Logo $q \le rs$, $0 < r \in \alpha$ e $0 < s \in \beta$ e assim $q \in \alpha\beta$, donde vale II.

Seja $p \in \alpha\beta$. Logo existem $r \in \alpha$ e $s \in \beta$ tal que $p \leq rs$. Como α e β são cortes, existem $r' \in \alpha$ e $s' \in \beta$ tal que r < r' e s < s'. Seja p' = r's'. Logo p' > p e $p' \in \alpha\beta$, ou seja, vale III

As propriedades de comutatividade, associatividade, elemento neutro e inverso multiplicativo seguem de maneira similar ao **Passo** 3. Observe que se $\alpha > 0^*$ e $\beta > 0^*$ então $\alpha\beta > 0^*$. (Exercício)

 $\overline{12}$

Passo 6: Defina
$$\alpha \cdot 0^* = 0^* \alpha e \alpha \beta = \begin{cases} (-\alpha)(-\beta) &, \alpha < 0^*, \ \beta < 0^* \\ -[(-\alpha)\beta] &, \ \alpha < 0^*, \ \beta < 0^* \\ -[\alpha(-\beta)] &, \ \alpha > 0^*, \ \beta < 0^* \end{cases}$$

Exercício 12.1. $\gamma = -(-\gamma)$

• $\alpha(\beta+\gamma)=\alpha\beta+\alpha\gamma\ (\gamma,\beta,\gamma>0^*\Rightarrow$ exercício) Suponha $\alpha>0^*,\ \beta<0^*,\ \beta+\gamma>0*.$

$$\gamma = (\beta + \gamma) - \beta; \ \alpha \gamma = \alpha[(\beta + \gamma) - \beta] \ e \ \alpha \gamma = \alpha(\beta + \gamma) + \alpha(-\beta) = \alpha(\beta + \gamma) - \alpha\beta. \ \text{Logo} \ \alpha \gamma + \alpha \beta = \alpha(\beta + \gamma)$$

OBS 12.1. Dado $A = \{1, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{n}, ...\}, -5, -4, 0$ são cotas inferiores de A; 1 é o supremo e o máximo.

O ínfimo e o supremo podem ou não pertencer ao conjunto; o mínimo e o máximo deve está no conjunto; todo máximo é supremo; todo mínimo é ínfimo.

Passo 7: Relembremos que $r^* = \{ p \in \mathbb{Q}; \ p < q \}$

Vamos mostrar que

1.
$$r^* + s^* = (r+s)^*$$

2.
$$r^*s^* = (rs)^*$$

3.
$$r^* < s^* \Leftrightarrow r < s$$

Prova de 1. Seja $p \in r^* + s^*$. Então p = u + v, com $u \in r^*$, $v \in s^*$. Logo u < r e v < s. Logo p < r + s, ou seja $p \in (r + s)^*$. Portanto, $r^* + s^* \subset (r + s)^*$. Seja $p \in (r + s)^*$. Logo p < r + s. Seja t escolhido tal que 2t = r + s - p. Seja t' = r - t e t' = s - t. Note que t' + s' = r = s - 2t = p. Portanto, t' + s = t' = s - t. Note que t' + s' = t' = s - t. Prova de 2. Fica como exercício! Prova de 3. Se t' < s, então $t' \in s^*$, mas $t' \notin t'$. Note que se $t' \in t'$, então $t' \in t'$, então $t' \in t'$, ou seja, $t' \in t'$. Suponha $t' \in t'$. Logo existe $t' \in t'$ tal que $t' \in t'$. Logo $t' \in t'$.

Concluímos através destes três fatos que a função:

$$f: \quad \mathbb{Q} \quad \to \mathbb{R}$$
$$q \quad \mapsto q^*$$

Preserva soma (P,1), produto (P,2) e ordem (P,3).

Vamos mostrar que f é injetiva e assim, concluir que f é imersão de $\mathbb Q$ em $\mathbb R$ que preserva operações e ordem.

Se $r \neq s$ (r < s), $r^* < s^*$, ou seja $f(r) \neq f(s)$. Logo podemos identificar \mathbb{Q} como um subconjunto de \mathbb{R} $(\mathbb{Q} \subset \mathbb{R})$, fazendo $r^* := r$ Assim

$$\mathbb{R} = \mathbb{Q} \cup (\mathbb{R} - \mathbb{Q})$$

Definição 12.1. $(\mathbb{R} - \mathbb{Q})$ é denominado conjunto dos números irracionais.

Proposição 12.20. (a) Se $z \in \mathbb{R}$ com z + a = a, então z = 0.

- (b) Se $ab = o \ com \ a, b \in \mathbb{R} \ ent \tilde{a}o \ a = 0 \ ou \ b = 0$
- (c) Se $a \in \mathbb{R}^+$, então $a^2 > 0$
- (d) 1 > 0
- (e) Seja $a \leq 0$ e $b \leq 0$ com $a, b \in \mathbb{R}$. Então,

$$a < b \Leftrightarrow a^2 < b^2 \Leftrightarrow \sqrt{a} < \sqrt{b}$$

(f) Mostre que $\sqrt{ab} \le \frac{a+b}{2}$, se a, b > 0

Demonstração.

(a)
$$z + 0 = z + (a + (-a)) = (z + a) + (-a) = a + (-a) = 0$$

(b) Suponha $a \neq 0$. Logo existe $a_{-1} = \frac{1}{a}$. Assim $ab = 0 \Rightarrow \frac{1}{a}ab = \frac{1}{a}0 = (\frac{1}{a}a)b = 0 \Rightarrow b+0$

- (c) Se $a \in \mathbb{R}^*$, então $a^2 > 0$. Se $a \in \mathbb{R}^+$, então a.a > 0. Se $a \in \mathbb{R}^-$, $-a \in \mathbb{R}^+$, logo (-a)(-a) > 0 e, consequentemente $a^2 > 0$.
- (d) 1 = 1.1 > 0, donde 1 > 0
- (e) Suponha a>0 e b>0. Logo a+b>0. Note que $b^2-a^2=(b-a)(b+a)$. Como b>a e b+a>0, (b-a)(b+a)>0. Logo $b^2>a^2$
- (f) Temos que $(\sqrt{a} \sqrt{b})^2 \ge \Leftrightarrow (\sqrt{a})^2 2\sqrt{ab} + (\sqrt{b})^2 \ge 0 \Leftrightarrow a + b \ge 2\sqrt{ab} \Leftrightarrow \sqrt{ab} \le \frac{a+b}{2}$

12.1.2 Inequações

A resolução de inequações está baseada na relação de ordem dos números reais e suas propriedades.

(a) Determine o conjunto A formado por todos os pontos $x \in \mathbb{R}$ tais que:

$$3x + 5 < 3$$

Solução:
$$3x + 5 < 3 \Rightarrow 3x + 5 - 5 < 3 - 5 \Rightarrow 3x < -2 \Rightarrow \frac{1}{3}3x < \frac{1}{3} - 2 \Rightarrow x < -\frac{2}{3}$$

(b) Resolva a inequação $x^2 - 5x + 3 < -3$ Solução: $x^2 - 5x + 6 < 0 \Leftrightarrow (x-2)(x-3) < 0 \Leftrightarrow x-2 < 0$ e x-3 > 0 ou x-2 > 0 e x-3 < 0 Note que x-2 < 0 e x-3 > 0 é impossível de acontecer. Logo a solução $\{x \in \mathbb{R}; \ 2 < x < 3\}$

12.1.3 Valor absoluto de um número real

Definição 12.2. O valor absoluto de um número real a denotado por |a| é definido como: $|a| = \begin{cases} a, & \text{se } a \ge 0 \\ -a, & \text{se } a < 0 \end{cases}$

OBS 12.2. $|a| \ge 0$

Propriedades:

- (a) $|a|^2 = a^2$, para todo $a \in \mathbb{R}$
- (b) |ab| = |a||b| para todos $a, b \in \mathbb{R}$.
- (c) $-|a| \le a \le |a|$
- (d) $|a+b| \leq |a| + |b|$, para todos $a, b \in \mathbb{R}$

Exercício 12.2. Resolva:

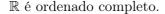
(a) |2x+1| < 7 **Solução:** Note que: $-7 < 2x+1 < 7 \Leftrightarrow -8 < 2x < 6 \Leftrightarrow -4 < x < 3$. Logo o conjunto solução é $\{x \in \mathbb{R}; \ -4 < x < 3\}$.

12.2 Conclusão

Finalmente mostramos que existe um corpo ordenado completo que contém \mathbb{Q} . Vimos também que para resolver inequações polinomiais de 1 e 2 graus não há mistério.

RESUMO

..



Para resolver inequações, basta aplicar as propriedades de ordem de \mathbb{R} .

PRÓXIMA AULA

Na próxima aula mostraremos que $\mathbb R$ também possui a propriedade arquimediana e que é não-enumerável.

ATIVIDADES

ATIV. 12.1. Seja $K:=\{s+t\sqrt{2},\ s,t\in\mathbb{Q}\}$. Mostre que K satisfaz as seguintes afirmações

- a) Se $x_1, x_2 \in K$, então $x_1 + x_2 \in K$ e $x_1x_2 \in K$
- b) Se $x \neq 0$ e $x \in K$, então $\frac{1}{x} \in K$

O conjunto K é chamado subcorpo de \mathbb{R} . Com a ordem induzida de \mathbb{R} , o conjunto K é um corpo ordenado que está entre \mathbb{Q} e \mathbb{R} .

ATIV. 12.2. Se $x, y \in \mathbb{R}$, mostre que:

- a) $|x| = \sqrt{x^2}$
- b) $\left|\frac{x}{y}\right| = \frac{|x|}{|y|}(y \neq 0)$
- c) |x+y| = |x| + |y| se, e somente se, $xy \ge 0$.

ATIV. 12.3. Mostre que $|x-y| \leq |x| + |y|, \, \forall x, y \in \mathbb{R}$

LEITURA COMPLEMENTAR

LIMA, Elon L., Análise na Reta Vol. 1, IMPA, Projeto Euclides, 5.ed., Rio de Janeiro, 2008.

DOMINGUES, H. Fundamentos de Aritmética, Atual Editora, São Paulo, 2001.

LIPSCHUTZ , S. Teoria dos Conjuntos - Coleção Schaum RUDIN, W. Principles of Mathematical Analysis, McGraw-Hill, 1976