Matemática para o Ensino Médio II

Mateus Alegri

São Cristóvão/SE 2011

Matematica para o Ensino Médio II

Elaboração de Conteúdo Mateus Alegri

Capa Hermeson Alves de Menezes

Copyright © 2011, Universidade Federal de Sergipe / CESAD. Nenhuma parte deste material poderá ser reproduzida, transmitida e gravada por qualquer meio eletrônico, mecânico, por fotocópia e outros, sem a prévia autorização por escrito da UFS.

FICHA CATALOGRÁFICA PRODUZIDA PELA BIBLIOTECA CENTRAL UNIVERSIDADE FEDERAL DE SERGIPE

Alegri. Mateus

A3 66m Matemática para o Ensino Médio II / Mateus Alegri -- São Cristóvão: Universidade Federal de Sergipe, CESAD, 2011.

1. Matemática. Estudo e ensino. 2. Combinatório. Mtemática financeira. 4. Geometria. I. Título.

CDU 51:37.02

Presidente da República

Luiz Inácio Lula da Silva

Ministro da Educação

Fernando Haddad

Secretário de Educação a Distância

Carlos Eduardo Bielschowsky

Reitor

Josué Modesto dos Passos Subrinho

Vice-Reitor

Angelo Roberto Antoniolli

Núcleo de Serviços Gráficos e Audiovisuais

Núcleo de Tecnologia da Informação

João Eduardo Batista de Deus Anselmo

Raimundo Araujo de Almeida Júnior

Marcel da Conceição Souza

Assessoria de Comunicação

Edvar Freire Caetano Guilherme Borba Gouy

Chefe de Gabinete

Ednalva Freire Caetano

Coordenador Geral da UAB/UFS

Diretor do CESAD Antônio Ponciano Bezerra

Vice-coordenador da UAB/UFS Vice-diretor do CESAD

Fábio Alves dos Santos

Giselda Barros

Clotildes Farias de Sousa (Diretora)

Diretoria Administrativa e Financeira

Edélzio Alves Costa Júnior (Diretor) Sylvia Helena de Almeida Soares

Valter Siqueira Alves

Diretoria Pedagógica

Coordenação de Cursos

Djalma Andrade (Coordenadora)

Núcleo de Formação Continuada

Rosemeire Marcedo Costa (Coordenadora)

Núcleo de Avaliação

Hérica dos Santos Matos (Coordenadora)

Carlos Alberto Vasconcelos

Coordenadores de Curso

Denis Menezes (Letras Português)

Eduardo Farias (Administração) Haroldo Dorea (Química)

Hassan Sherafat (Matemática)

Hélio Mario Araújo (Geografia)

Lourival Santana (História)

Marcelo Macedo (Física)

Coordenadores de Tutoria

Edvan dos Santos Sousa (Física)

Geraldo Ferreira Souza Júnior (Matemática) Janaína Couvo T. M. de Aguiar (Administração)

Priscila Viana Cardozo (História)

Rafael de Jesus Santana (Química)

Ítala Santana Souza (Geografia)

Trícia C. P. de Sant'ana (Ciências Biológicas)

Vanessa Santos Góes (Letras Português)

Lívia Carvalho Santos (Presencial)

NÚCLEO DE MATERIAL DIDÁTICO

Hermeson Menezes (Coordenador) Arthur Pinto R. S. Almeida

Silmara Pantaleão (Ciências Biológicas)

Marcio Roberto de Oliveira Mendoça

Neverton Correia da Silva Nycolas Menezes Melo

UNIVERSIDADE FEDERAL DE SERGIPE

Cidade Universitária Prof. "José Aloísio de Campos" Av. Marechal Rondon, s/n - Jardim Rosa Elze CEP 49100-000 - São Cristóvão - SE Fone(79) 2105 - 6600 - Fax(79) 2105- 6474

<u>Sumário</u>

Capítu	ılo 1: Progressões Aritméticas	13
1.1	Introdução	13
1.2	Progressões aritméticas-definições e	
	$exemplos \dots \dots$	13
1.3	Fórmula da Soma dos n primeiros termos de uma	
	progressão aritmética	15
1.4	Conclusão	17
1.5	RESUMO	18
1.6	Proxima aula	18
1.7	Atividades	18
1.8	Leitura Complementar	19
Capítu	ılo 2: Progressões Geométricas	21
	2.0.1 Introdução	21
2.1	Progressões geométricas-definição e	
	exemplos	22
	2.1.1 Fórmula da soma dos <i>n primeiros termos de</i>	
	$uma\ progress\~ao\ geom\'etrica$	23
2.2	${ m Conclus} { m \~ao}$	24
2.3	RESUMO	24
2.4	Proxima aula	25
2.5	A tivida das	25

2.6	Leitura Complementar	26
Capítı	ılo 3: Introdução a Matemática Financeira	27
3.1	Introdução	27
3.2	Juros Simples	28
3.3	Juros Compostos	30
3.4	Capitalização e Amortização	32
3.5	Conclusão	35
\mathbf{RE}	SUMO	36
\mathbf{PR}	ÓXIMA AULA	37
\mathbf{AT}	IVIDADES	37
LE	ITURA COMPLEMENTAR	38
Capítı	ılo 4: Introdução a Combinatória, Parte I	39
4.1	Introdução	39
4.2	Pricípio Aditivo e Multiplicativo	39
4.3	Aplicações dos princípios Aditivo e Multiplicativo .	43
4.4	Permutações Simples	44
\mathbf{RE}	SUMO	45
\mathbf{PR}	ÓXIMA AULA	46
\mathbf{AT}	IVIDADES	46
\mathbf{LE}	ITURA COMPLEMENTAR	47
Capítı	ılo 5: Introdução a Combinatória, Parte II	49
5.1	Introdução	49
5.2	Arranjos simples	49
5.3	Combinações simples	52
5.4	Combinações Complementares	54
5.5	Conclusão	56
\mathbf{RE}	SUMO	56
\mathbf{PR}	ÓXIMA AULA	57

\mathbf{AT}	IVIDADES	57
LE]	ITURA COMPLEMENTAR	58
Capítu	ılo 6: Introdução a Combinatória-Aplicações,	
par	te I	59
6.1	Introdução	59
6.2	Equações Lineares com coeficientes unitários	59
6.3	Combinações com repetição	62
6.4	Permutações com repetição	64
\mathbf{RE}	SUMO	65
\mathbf{PR}	ÓXIMA AULA	66
\mathbf{AT}	IVIDADES	66
$\mathbf{L}\mathbf{E}$	ITURA COMPLEMENTAR	67
a 4		
-	ılo 7: Introdução a Combinatória-Aplicações,	
par	te II	69
7.1	Introdução	69
7.2	Arranjos com repetição	69
7.3	Permutações Circulares	71
7.4	Coeficientes Binomiais	73
7.5	Conclusão	75
\mathbf{RE}	SUMO	76
\mathbf{PR}	ÓXIMA AULA	77
\mathbf{AT}	IVIDADES	77
\mathbf{LE}	ITURA COMPLEMENTAR	78
Capítı	ılo 8: Introdução a teoria da Probabilidade	7 9
8.1	Introdução	79
8.2	Probabilidades	80
8.3	Probabilidade Condicional e Independência	83
\mathbf{RE}	SUMO	86

	8.4 Conclusão	87
	PRÓXIMA AULA	87
	ATIVIDADES	88
	LEITURA COMPLEMENTAR	89
Ca	apítulo 9: Médias e o Princípio das Gavetas	
	de Dirichlet	91
	9.1 Introdução	91
	9.2 Médias	91
	9.3 Desigualdade das médias	93
	9.4 Princípio das Gavetas de Dirichlet	96
	9.5 Conclusão	97
	RESUMO	97
	PRÓXIMA AULA	98
	ATIVIDADES	98
	LEITURA COMPLEMENTAR	99
Ca	apítulo 10: Introdução a Geometria Espacial: Pontos	,
	Retas e Planos	101
	10.1 Introdução	101
	10.2 Entes Primitivos e Axiomas da Geometria Euclidiana	a 102
	10.3 Posições de retas	104
	10.4 Posição relativa entre retas e plano	106
	10.5 Posição Relativa entre dois planos	107
	10.6 Conclusão	108
	RESUMO	108
	PRÓXIMA AULA	109
	ATIVIDADES	109
	LEITURA COMPLEMENTAR	110

Capítulo 11: Paralelismo e perpendicularismo	111
11.1 Introdução	111
11.2 Retas e Planos perpendiculares	111
11.3 Planos Paralelos e Proporcionalidade	116
11.4 Conclusão	117
RESUMO	118
PRÓXIMA AULA	118
ATIVIDADES	118
LEITURA COMPLEMENTAR	119
Capítulo 12: Noções de distâncias e ângulos	121
12.1 Introdução	121
12.2 Ângulos	121
12.3 Distâncias	125
12.4 Conclusão	126
RESUMO	127
PRÓXIMA AULA	128
ATIVIDADES	128
LEITURA COMPLEMENTAR	129
Capítulo 13: Poliedros	131
13.1 Introdução	131
13.2 Definições	131
13.3 A relação de Euler	
13.4 Conclusão	136
RESUMO	136
PRÓXIMA AULA	137
ATIVIDADES	137
LEITURA COMPLEMENTAR	138

Capítulo 14: Volume e Área de	
Superfície, Parte I	139
14.1 Introdução	139
14.2 Volume do Paralelepípedo Retangular	140
14.3 O Princípio de Cavalieri	140
RESUMO	144
PRÓXIMA AULA	145
ATIVIDADES	145
LEITURA COMPLEMENTAR	146
Capítulo 15: Volume e Área de	
Superfície, Parte II	147
15.1 Introdução	147
15.2 A Esfera	147
15.3 Àrea de Superfície	149
15.4 Sólidos de revolução	150
15.5 Conclusão	152
RESUMO	152
ATIVIDADES	153
LEITURA COMPLEMENTAR	153

1.1 Introdução

Prezado aluno, seja bem vindo ao curso Matemática para o Ensino Médio II. O objetivo principal deste curso é o de dar segurança em relação ao conteúdo do segundo ano do ensino médio para você, aluno, que posteriormente será professor abilitado a dar aulas no ensino fundamental e médio.

Nesta aula trabalharemos o conceito de progressões aritméticas, que você viu no início do segundo ano do ensino médio. Como você sabe, na vida real, são comuns, as grandezas que sofrem variações iguais em intervalos de tempos iguais. Isto está intimamente ligado a sequências nas quais o aumento de cada termo para o seguinte é constante.

Apresentaremos o conceito de progressões aritméticas enfatizando com exemplos e provaremos a fórmula da soma dos primeiros n termos de uma progressão aritmética. Mais adiante mostraremos como uma progressão aritmética pode ser "vista" como um polinômio, e forneceremos mais resultados associados a tais polinômios.

1.2 Progressões aritméticas-definições e exemplos

Definição 1.1. progressão aritmética: Uma progressão arit-

mética é uma sequência na qual a diferença entre cada termo e o termo anterior é constante. Essa diferença constante é chamada de razão da progressão e representada pela letra r.

Exemplo 1.1. As sequências (0, 4, 8, 12, 16, ...) e (7, 5, 3, 1, -1, -3, ...) são progressões aritméticas cujas razões valem 4 e -2, respectivamente.

Em uma progressão aritmética $(a_0, a_1, a_2, ..., a_n, ...)$, notemos que para sair de um termo para o seuinte necessitamos apenas somar a razão r. Neste caso $a_{n+1} = a_n + r$, onde $n \in \mathbb{N}$. A pergunta agora é: Se soubermos apenas a razão r e o primeiro termo a_0 , temos como descobrir o valor de um termo qualquer a_n ?

A resposta é sim, e por recursão, é fácil ver que, $a_n=a_0+rn$. Em geral vale: $a_n=a_k+(n-k)r$ para $0\leq k\leq n$

Exemplo 1.2. O preço de um carro novo é de R\$10000,00 e diminui R\$250,00 a cada ano. Qual será o preço deste carro passado 11 anos?

Solução:

Neste caso $a_0=10000$ e queremos calcular a_{11} . Como a desvalorização é constante, (a_n) é uma progressão aritmética Deste modo r=-250 e $a_{11}=10000-250\times 11=7250$

Exemplo 1.3. O cometa Halley visita a Terra a cada 76 anos. Sua última passagem foi em 1986. Quantas verzes ele visitou a Terra na era Cristã? Em que ano foi a sua primeira passagem nesta era?

Solução:

Se o último ano da passagem do cometa foi em 1986, então $a_1 = 1986$ e r = -76. Assim $a_n = 1986 - 76(n-1) = 2062 - 76$, de modo que $a_n > 0$ desde que n < 27, 13... Portanto, oos termos positivos dessa progressão são os 27 primeiros $a_1, a_2, ..., a_{27}$. Assim o cometa Halley visitou 27 vezes a Terra e a sua primeira passagem

CESAD

1

na era cristã foi em $a_{27} = 2062 - 76 \times 27 = 10$.

1.3 Fórmula da Soma dos n primeiros termos de uma progressão aritmética

Nesta seção exibiremos a fórmula da soma dos n primeiros termos de uma progressão aritmética, bem como algumas consequências disto.

Teorema 1.1. A soma dos n primeiros termos de uma progressão aritmética $(a_1, a_2, ...)$ é

$$S_n = \frac{(a_1 + a_n)n}{2}.$$

Demonstração

Consideremos $S_n = a_1 + a_2 + ... + a_{n-1} + a_n$, é verdade que $2S_n = (a_1 + a_n) + (a_2 + a_{n-1}) + (a_3 + a_{n-2}) + ... + (a_n + a_1)$. Observe que, no primeiro parênteses temos: $(a_1 + a_n) = a_1 + a_1 + (n-1)r$; e no segundo,

 $(a_2+a_{n-1})=a_2+a_1+(n-2)r=a_1+a_1+(n-1)r=(a_1+a_n),$ de forma análoga podemos concluir que todos os parênteses são iguais, de modo que temos n deles assim a soma S_n valerá:

$$S_n = \frac{(a_1 + a_n)n}{2}.$$

Exemplo 1.4. Qual é o valor da soma dos primeiros 12 termos da progressão aritmética:(-2, 1, 4, 7, 10, ...)?

Solução:

Como $a_{12} = -2 + 12 \times 3 = 34$, temos:

$$S_{12} = \left(\frac{-2+34}{2}\right)12 = 192.$$

Exemplo 1.5. Mostre que a soma dos n primeiros números inteiros positivos é:

$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}.$$

Solução:

Considere a progressão aritmética:(1, 2, 3, 4, ...), utilizando a fórmula para a soma dos primeiros termos para esta progressão, temos:

$$S_n = \sum_{k=1}^n k = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}.$$

Proposição 1.1. A soma dos primeiros termos de uma progressão aritmética é um polinômio de grau 2 sem termo livre.

Demonstração Como $S_n = \frac{(a_1 + a_n)n}{2}$, e $a_n = a_1 + (n-1)r$, substituindo a_n na fórmula de S_n , temos:

$$S_n = \frac{r}{2}n^2 + (a_1 - \frac{r}{2})n.$$

Definição 1.2. Uma progressão aritmética de segunda ordem é uma sequência (a_n) na qual as diferenças $\delta a_n = a_{n+1} - a_n$, entre cada termo e o termo anterior, formam uma progressão aritmética não-estacionária. Em geral, uma progressão de ordem k, (k>2) é uma sequência na qual as diferenças entre cada termo e o termo anterior formam uma progressão de ordem k-1.

Exemplo 1.6. Seja
$$(a_n) = (0, 0, 6, 24, 60, 120, 210)$$
, $(\delta a_n) = (0, 6, 18, 36, 60, 90)$; $(\delta^2 a_n) = (6, 12, 18, 24, 30)$; $(\delta^3 a_n) = (6, 6, 6, 6)$.

Como $(\delta^3 a_n)$ é constante, temos que $(\delta^2 a_n)$ é uma progressão aritmética.

Proposição 1.2. Uma sequência (a_n) na qual o termo de ordem n é um polinômio em n, do segundo grau, se, e somente se, a sequência (a_n) é uma progressão aritmética de segunda ordem.

Demonstração

Se,
$$a_n = an^2 + bn + c$$
, com $a \neq 0$, tem-se:

$$\delta a_n = a_{n+1} = a_n = a(n+1)^2 + b(n+1) + c - (an^2 + bn + c) = 2an + a + b,$$

CESAD AULA

que é do primeiro grau em n. Assim (δa_n) é uma progressão aritmética não-estacionária.

Reciprocamente, se (a_n) é uma progressão aritmética de segunda ordem, (δa_n) é uma progressão aritmética com razão diferente de zero, e a soma dos primeiros n termos de (δa_n) é um polinômio do segundo grau em n, de maneira que (a_n) também é um polinômio de segundo grau em n.

Teorema 1.2. Uma sequência (a_n) é uma progressão aritmética de ordem p $(p \ge 2)$, se, e somente se, a_n é um polinômio de grau p em n.

Demonstração

Vamos proceder por indução sobre p. Para p=2 é válido pela proposição anterior.

Suponhamos que o teorema seja válido para p e provemos que a afirmação é válida para p=s+1. Se (a_n) é uma progressão aritmética de ordem s+1, $(\delta a_n)=a_{n+1}-a_n$ é uma progressão aritmética de ordem s, e por indução, (δa_n) é um polinômio de grau s em n. Logo a soma dos primeiros n termos de (δa_n) que vale a_n-a_1 é um polinômio de grau s+1 em n, de modo que s+1 em polinômio de grau s+1 em n. Reciprocamente, se s+1 em n. Por indução, s+1 em n, s+1 em n, s+1 em n. Por indução, s+1 em n, s+1 em

1.4 Conclusão

Na aula de hoje, apresentamos a definição de progressão aritmética e alguns resultados relacionados. O ponto principal acerca de progressões é que uma progressão aritmética de ordem p $(p \geq 2)$ é

associada a um polinômio de grau p. De modo que você, prezado aluno e futuro professor deverá "ver"uma progressão aritmética de outra maneira: do ponto de vista polinomial.

1.5 RESUMO

Uma progressão aritmética é uma sequência na qual a diferença entre cada termo e o termo anterior é constante. Essa diferença constante é chamada de razão da progressão e representada pela letra r, cuja fórmula geral é dada por: $a_n = a_0 + rn$., onde r é a chamada de razão de uma progressão aritmética.

A soma dos n
 primeiros termos de uma progressão aritmética $(a_1, a_2, ...)$ é:

$$S_n = \frac{(a_1 + a_n)n}{2}.$$

1.6 Proxima aula

Na próxima aula, daremos a definição de progressões geométricas, motivado por exemplos. Exibiremos também a fórmula que calcula o valor da soma dos primeiros n termos de uma progressão geométrica.

1.7 Atividades

ATIV. 1.1. Dada uma fita separada em intervalos horizontais por três cores: azul amarelo e branco, onde há repetição dessas cores. Se a primeira cor que vemos é amarelo, a segunda azul e a terceira branca, qual será a cor do intervalo de número 10⁶?

CESAD AULA

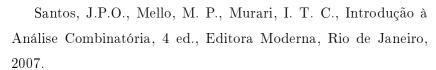
ATIV. 1.2. Quantos números inteiros existem, de 1000 a 10000, que não são divisíveis nem por 5 nem por 7?

ATIV. 1.3. Ache a_0 numa P.A., sabendo que r=1/4 e a29=45.

ATIV. 1.4. Quanto vale o produto $a(aq)(aq^2)(aq^3)...(aq^n)$?

1.8 Leitura Complementar

LIMA, Elon L., Matemática para o Ensino Médio, Vol.2, IMPA, Projeto Euclides, 1.ed., Rio de Janeiro, 1998.



Guelli, C.A., Iezzi, G., Dolce, O., Álgebra I - Sequencias - Progressões - Logarítmos, Editora Moderna, Rio de Janeiro, 2007.

